research

Few-Boson Processes in the Presence of an Attractive Impurity under One-Dimensional Confinement

Abstract

We consider a few-boson system confined to one dimension with a single distinguishable particle of lesser mass. All particle interactions are modeled with δ\delta-functions, but due to the mass imbalance the problem is nonintegrable. Universal few-body binding energies, atom-dimer and atom-trimer scattering lengths are all calculated in terms of two parameters, namely the mass ratio: mL/mHm_{\text{L}}/m_{\text{H}}, and ratio gHH/gHLg_{\text{HH}}/g_{\text{HL}} of the δ\delta-function couplings. We specifically identify the values of these ratios for which the atom-dimer or atom-trimer scattering lengths vanish or diverge. We identify regions in this parameter space in which various few-body inelastic process become energetically allowed. In the Tonks-Girardeau limit (gHHg_{\text{HH}}\rightarrow \infty), our results are relevant to experiments involving trapped fermions with an impurity atom

    Similar works