4,611 research outputs found

    Fascicles and the interfascicular matrix show adaptation for fatigue resistance in energy storing tendons

    Get PDF
    Tendon is composed of rope-like fascicles, bound together by interfascicular matrix (IFM). Our previous work shows that the IFM is critical for tendon function, facilitating sliding between fascicles to allow tendons to stretch. This function is particularly important in energy storing tendons, which experience extremely high strains during exercise, and therefore require the capacity for considerable inter-fascicular sliding and recoil. This capacity is not required in positional tendons. Whilst we have previously described the quasi-static properties of the IFM, the fatigue resistance of the IFM in functionally distinct tendons remains unknown. We therefore tested the hypothesis that fascicles and IFM in the energy storing equine superficial digital flexor tendon (SDFT) are more fatigue resistant than those in the positional common digital extensor tendon (CDET). Fascicles and IFM from both tendon types were subjected to cyclic fatigue testing until failure, and mechanical properties were calculated. The results demonstrated that both fascicles and IFM from the energy storing SDFT were able to resist a greater number of cycles before failure than those from the positional CDET. Further, SDFT fascicles and IFM exhibited less hysteresis over the course of testing than their counterparts in the CDET. This is the first study to assess the fatigue resistance of the IFM, demonstrating that IFM has a functional role within tendon and contributes significantly to tendon mechanical properties. These data provide important advances into fully characterising tendon structure-function relationships

    Colloidal templating at a cholesteric - oil interface: Assembly guided by an array of disclination lines

    Full text link
    We simulate colloids (radius R∼1μR \sim 1\mum) trapped at the interface between a cholesteric liquid crystal and an immiscible oil, at which the helical order (pitch p) in the bulk conflicts with the orientation induced at the interface, stabilizing an ordered array of disclinations. For weak anchoring strength W of the director field at the colloidal surface, this creates a template, favoring particle positions eitheron top of or midway between defect lines, depending on α=R/p\alpha = R/p. For small α\alpha, optical microscopy experiments confirm this picture, but for larger α\alpha no templating is seen. This may stem from the emergence at moderate W of a rugged energy landscape associated with defect reconnections.Comment: 5 pages, 4 figure

    The impact of grassland management regime on the community structure of selected bacterial groups in soils

    Get PDF
    The impact of long-term grassland management regimes on microbial community structure in soils was assessed using multivariate analysis of polymerase chain reaction^denaturing gradient gel electrophoresis (PCR^DGGE) banding patterns of selected bacterial groups and PLFA (phospholipid fatty acid) profiling. The management regimes assessed were inorganic nitrogen (N) fertiliser application and soil drainage. PCR^DGGE profiles of the eubacteria, actinomycetes, ammonia oxidisers and pseudomonads were assessed by principal co-ordinate analysis of similarity indices which were generated from binary data using both Dice and Jaccard coefficients. The analysis of binary DGGE data revealed significant impacts of N fertiliser on the eubacterial and actinomycete community structure using the Jaccard coefficient, whilst N fertiliser had a significant impact on the actinomycete community structure only when using similarity indices generated from the Dice coefficient. Soil drainage had a significant impact on the community structures of the actinomycetes and the pseudomonads using both Dice and Jaccard derived similarity indices. Multivariate analysis of principal components derived from PLFA profiling revealed that N fertiliser had a significant impact on the microbial community structure. Although drainage alone was not a significant factor in discriminating between PLFA community profiles of the different treatments, there was a significant interaction with N fertiliser. Analysis of principal component analysis (PCA) loadings revealed that PLFAs i15:0 and i17:0 were partly responsible for the clustering away of the undrained^N fertilised treatment. Although soil management regime influenced some background soil data, correlation analysis using PC1 from PLFA data revealed no significant relationship with soil organic matter, pH, total C and total N

    Effect of fatigue loading on structure and functional behaviour of fascicles from energy-storing tendons

    Get PDF
    Tendons can broadly be categorized according to their function: those that act purely to position the limb and those that have an additional function as energy stores. Energy-storing tendons undergo many cycles of large deformations during locomotion, and so must be able to extend and recoil efficiently, rapidly and repeatedly. Our previous work has shown rotation in response to applied strain in fascicles from energy-storing tendons, indicating the presence of helical substructures which may provide greater elasticity and recovery. In the current study, we assessed how preconditioning and fatigue loading affect the ability of fascicles from the energy-storing equine superficial digital flexor tendon to extend and recoil. We hypothesized that preconditioned samples would exhibit changes in microstructural strain response, but would retain their ability to recover. We further hypothesized that fatigue loading would result in sample damage, causing further alterations in extension mechanisms and a significant reduction in sample recovery. The results broadly support these hypotheses: preconditioned samples showed some alterations in microstructural strain response, but were able to recover following the removal of load. However, fatigue loaded samples showed visual evidence of damage and exhibited further alterations in extension mechanisms, characterized by decreased rotation in response to applied strain. This was accompanied by increased hysteresis and decreased recovery. These results suggest that fatigue loading results in a compromised helix substructure, reducing the ability of energy-storing tendons to recoil. A decreased ability to recoil may lead to an impaired response to further loading, potentially increasing the likelihood of injury

    Emulsification in binary liquids containing colloidal particles: a structure-factor analysis

    Get PDF
    We present a quantitative confocal-microscopy study of the transient and final microstructure of particle-stabilised emulsions formed via demixing in a binary liquid. To this end, we have developed an image-analysis method that relies on structure factors obtained from discrete Fourier transforms of individual frames in confocal image sequences. Radially averaging the squared modulus of these Fourier transforms before peak fitting allows extraction of dominant length scales over the entire temperature range of the quench. Our procedure even yields information just after droplet nucleation, when the (fluorescence) contrast between the two separating phases is scarcely discernable in the images. We find that our emulsions are stabilised on experimental time scales by interfacial particles and that they are likely to have bimodal droplet-size distributions. We attribute the latter to coalescence together with creaming being the main coarsening mechanism during the late stages of emulsification and we support this claim with (direct) confocal-microscopy observations. In addition, our results imply that the observed droplets emerge from particle-promoted nucleation, possibly followed by a free-growth regime. Finally, we argue that creaming strongly affects droplet growth during the early stages of emulsification. Future investigations could clarify the link between quench conditions and resulting microstructure, paving the way for tailor-made particle-stabilised emulsions from binary liquids.Comment: http://iopscience.iop.org/0953-8984/22/45/455102

    Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles

    Get PDF
    Atmospheric sulfate aerosols have important impacts on air quality, climate, and human and ecosystem health. However, current air-quality models generally underestimate the rate of conversion of sulfur dioxide (SO2) to sulfate during severe haze pollution events, indicating that our understanding of sulfate formation chemistry is incomplete. This may arise because the air-quality models rely upon kinetics studies of SO2 oxidation conducted in dilute aqueous solutions, and not at the high solute strengths of atmospheric aerosol particles. Here, we utilize an aerosol flow reactor to perform direct investigation on the kinetics of aqueous oxidation of dissolved SO2 by hydrogen peroxide (H2O2) using pH-buffered, submicrometer, deliquesced aerosol particles at relative humidity of 73 to 90%. We find that the high solute strength of the aerosol particles significantly enhances the sulfate formation rate for the H2O2 oxidation pathway compared to the dilute solution. By taking these effects into account, our results indicate that the oxidation of SO2 by H2O2 in the liquid water present in atmospheric aerosol particles can contribute to the missing sulfate source during severe haze episodes

    Characterization of the Noise in Secondary Ion Mass Spectrometry Depth Profiles

    Full text link
    The noise in the depth profiles of secondary ion mass spectrometry (SIMS) is studied using different samples under various experimental conditions. Despite the noise contributions from various parts of the dynamic SIMS process, its overall character agrees very well with the Poissonian rather than the Gaussian distribution in all circumstances. The Poissonian relation between the measured mean-square error (MSE) and mean can be used to describe our data in the range of four orders. The departure from this relation at high counts is analyzed and found to be due to the saturation of the channeltron used. Once saturated, the detector was found to exhibit hysteresis between rising and falling input flux and output counts.Comment: 14 pages, 4 postscript figures, to appear on J. Appl. Phy

    Detection of Far-Infrared Water Vapor, Hydroxyl, and Carbon Monoxide Emissions from the Supernova Remnant 3C 391

    Get PDF
    We report the detection of shock-excited far-infrared emission of H2O, OH, and CO from the supernova remnant 3C 391, using the ISO Long-Wavelength Spectrometer. This is the first detection of thermal H2O and OH emission from a supernova remnant. For two other remnants, W~28 and W~44, CO emission was detected but OH was only detected in absorption. The observed H2O and OH emission lines arise from levels within ~400 K of the ground state, consistent with collisional excitation in warm, dense gas created after the passage of the shock front through the dense clumps in the pre-shock cloud. The post-shock gas we observe has a density ~2x10^5 cm^{-3} and temperature 100-1000 K, and the relative abundances of CO:OH:H2O in the emitting region are 100:1:7 for a temperature of 200 K. The presence of a significant column of warm H2O suggests that the chemistry has been significantly changed by the shock. The existence of significant column densities of both OH and H2O, which is at odds with models for non-dissociative shocks into dense gas, could be due to photodissociation of H2O or a mix of fast and slow shocks through regions with different pre-shock density.Comment: AASTeX manuscript and 4 postscript figure

    The Addition and Cessation of Inorganic Fertiliser Amendments in Long-Term Managed Grasslands: Impacts on Above and Below-Ground Communities

    Get PDF
    In recent times, land use in the United Kingdom has undergone considerable changes because of social and economic pressures, leading to a fine balance between the demands of highly productive intensive systems and practices which are perceived to be more environmentally acceptable. Plant productivity is governed by the supply of nutrients from the soil, which in turn is dependent on the dynamics of organic matter decomposition driven by soil micro-, meso- and macro fauna. Considerable information is available concerning the impact of inorganic fertiliser additions on communities of macro-fauna and flora, but the effects on specific microbial communities in soils are less clear. The effects of withholding inorganic nitrogen (N) are much less studied. The present study investigated the impact on plant and soil communities of either adding or withholding N from long-term managed plots

    Reflecting on the experiential journey: Creating, developing and understanding leadership in Equality, Diversity and Inclusion within a Faculty

    Get PDF
    London South Bank University (LSBU) appointed equality, diversity and inclusion (EDI) leads in each of its Schools in 2021/22. The leaders’ remit was to deliver and embed LSBU’s EDI strategy cognisant of the uniqueness of the Schools. LSBU’s pioneering EDI strategy has been recognised as a symbol of excellence and shortlisted for two national EDI awards. The composition of LSBU’s academic senior management does not yet fully reflect the intersectional diversity of the organisation. Therefore, this session aims to share the experience of LSBU’s EDI leads and facilitate discussion about the benchmarks for achieving leadership in EDI within a School
    • …
    corecore