5,609 research outputs found

    Leptogenesis within a generalized quark-lepton symmetry

    Full text link
    Quark-lepton symmetry has been shown to be inconsistent with baryogenesis via leptogenesis in natural schemes of the see-saw mechanism. Within the phenomenological approach of textures, we relax this strict symmetry and propose weaker conditions, namely models of the neutrino Dirac mass matrix MDM_D which have the same hierarchy as the matrix elements of MuM_u. We call this guide-line generalized hierarchicalhierarchical quark-lepton symmetry. We consider in detail particular cases in which the moduli of the matrix elements of MDM_D are equal to those of MuM_u. Within the phenomenological approach of textures, we try for the heavy Majorana mass matrix diagonal and off-diagonal forms. We find that an ansatz for MDM_D preserving the hierarchy, together with an off-diagonal model for the heavy Majorana neutrino mass, is consistent with neutrino masses, neutrino mixing and baryogenesis via leptogenesis for an intermediate mass scale mR∌1012m_R \sim 10^{12} GeV. The preservation of the hierarchical structure could come from a possible symmetry scheme.Comment: 12 pages, RevTex4. Title and abstract changed. Revised and enlarged versio

    Leptogenesis in the two right-handed neutrino model revisited

    Full text link
    We revisit leptogenesis in the minimal non-supersymmetric type I see-saw mechanism with two right-handed (RH) neutrinos, including flavour effects and allowing both RH neutrinos N_1 and N_2 to contribute, rather than just the lightest RH neutrino N_1 that has hitherto been considered. By performing scans over parameter space in terms of the single complex angle z of the orthogonal matrix R, for a range of PMNS parameters, we find that in regions around z \sim \pm \pi/2, for the case of a normal mass hierarchy, the N_2 contribution can dominate the contribution to leptogenesis, allowing the lightest RH neutrino mass to be decreased by about an order of magnitude in these regions, down to M_1 \sim 1.3*10^11 GeV for vanishing initial N_2-abundance, with the numerical results supported by analytic estimates. We show that the regions around z \sim \pm \pi /2 correspond to light sequential dominance, so the new results in this paper may be relevant to unified model building.Comment: 41 pages, 10 figures; v2 matches published version in PR

    Active-sterile neutrino oscillations in the early Universe: asymmetry generation at low |delta m^2| and the Landau-Zener approximation

    Get PDF
    It is well established that active-sterile neutrino oscillations generate large neutrino asymmetries for very small mixing angles (sin⁥22Ξ0â‰Č10−4\sin^2 2\theta_0\lesssim 10^{-4}), negative values of ÎŽm2\delta m^2 and provided that ∣Ύm2∣≳10−4eV2|\delta m^2|\gtrsim 10^{-4} {\rm eV^2}. By numerically solving the quantum kinetic equations, we show that the generation still occurs at much lower values of ∣Ύm2∣|\delta m^2|. We also describe the borders of the generation at small mixing angles and show how our numerical results can be analytically understood within the framework of the Landau-Zener approximation thereby extending previous work based on the adiabatic limit. This approximate approach leads to a fair description of the MSW dominated regime of the neutrino asymmetry evolution and is also able to correctly reproduce its final value. We also briefly discuss the impact that neutrino asymmetry generation could have on big bang nucleosynthesis, CMBR and relic neutrinos.Comment: 29 pages, 8 figures; to appear on Phys. ReV. D; figure 7 added, new curves in figure 5a, new figure

    Leptogenesis beyond the limit of hierarchical heavy neutrino masses

    Full text link
    We calculate the baryon asymmetry of the Universe in thermal leptogenesis beyond the usual lightest right-handed (RH) neutrino dominated scenario (N_1DS) and in particular beyond the hierarchical limit (HL), M_1 << M_2 << M_3, for the RH neutrino mass spectrum. After providing some orientation among the large variety of models, we first revisit the central role of the N_1DS, with new insights on the dynamics of the asymmetry generation and then discuss the main routes departing from it, focusing on models beyond the HL. We study in detail two examples of `strong-strong' wash-out scenarios: one with `maximal phase' and the limit of very large M_3, studying the effects arising when delta_2=(M_2-M_1)/M_1 is small. We extend analytical methods already applied to the N_1DS showing, for example, that, in the degenerate limit (DL), the efficiency factors of the RH neutrinos become equal with the single decay parameter replaced by the sum. Both cases disprove the misconception that close RH neutrino masses necessarily lead to a final asymmetry enhancement and to a relaxation of the lower bounds on M_1 and on the initial temperature of the radiation-dominated expansion. We also explain why leptogenesis tends to favor normal hierarchy compared to inverted hierarchy for the left-handed neutrino masses.Comment: 30 pages, 8 figures; corrected typo in Eq. (67); shortened Introduction, Section 3 and Conclusions; one figure removed; added 2 references; to appear in JCA

    Further studies on relic neutrino asymmetry generation I: the adiabatic Boltzmann limit, non-adiabatic evolution, and the classical harmonic oscillator analogue of the quantum kinetic equations

    Get PDF
    We demonstrate that the relic neutrino asymmetry evolution equation derived from the quantum kinetic equations (QKEs) reduces to the Boltzmann limit that is dependent only on the instantaneous neutrino number densities, in the adiabatic limit in conjunction with sufficient damping. An original physical and/or geometrical interpretation of the adiabatic approximation is given, which serves as a convenient visual aid to understanding the sharply contrasting resonance behaviours exhibited by the neutrino ensemble in opposing collision regimes. We also present a classical analogue for the evolution of the difference in Μα\nu_{\alpha} and Îœs\nu_s number densities which, in the Boltzmann limit, is akin to the behaviour of the generic reaction A⇌BA \rightleftharpoons B with equal forward and reverse reaction rate constants. A new characteristic quantity, the matter and collision-affected mixing angle of the neutrino ensemble, is identified here for the first time. The role of collisions is revealed to be twofold: (i) to wipe out the inherent oscillations, and (ii) to equilibrate the Μα\nu_{\alpha} and Îœs\nu_s number densities in the long run. Studies on non-adiabatic evolution and its possible relation to rapid oscillations in lepton number generation also feature, with the introduction of an adiabaticity parameter for collision-affected oscillations.Comment: RevTeX, 38 pages including 8 embedded figure

    Leptogenesis implications in models with Abelian family symmetry and one extra real Higgs singlet

    Get PDF
    We show that the neutrino models, as suggested by Low, which have an additional Abelian family symmetry and a real Higgs singlet to the default see-saw do not hinder the possibility of successful thermal leptogenesis. For these models (neglecting radiative effects), we have investigated the situation of strong washout in both the one-flavor approximation and when flavor effects are included. The result is that while such models predict that theta_{13}=0 and that one light neutrino to be massless, they do not modify or provide significant constraints on the typical leptogenesis scenario where the final asymmetry is dominated by the decays of the lightest right-handed neutrinos.Comment: 18 pages, RevTeX4, accepted by Phys. Rev. D. v2: minor corrections, note and 1 ref. added, same content as published versio

    Covering Problems for Partial Words and for Indeterminate Strings

    Full text link
    We consider the problem of computing a shortest solid cover of an indeterminate string. An indeterminate string may contain non-solid symbols, each of which specifies a subset of the alphabet that could be present at the corresponding position. We also consider covering partial words, which are a special case of indeterminate strings where each non-solid symbol is a don't care symbol. We prove that indeterminate string covering problem and partial word covering problem are NP-complete for binary alphabet and show that both problems are fixed-parameter tractable with respect to kk, the number of non-solid symbols. For the indeterminate string covering problem we obtain a 2O(klog⁥k)+nkO(1)2^{O(k \log k)} + n k^{O(1)}-time algorithm. For the partial word covering problem we obtain a 2O(klog⁥k)+nkO(1)2^{O(\sqrt{k}\log k)} + nk^{O(1)}-time algorithm. We prove that, unless the Exponential Time Hypothesis is false, no 2o(k)nO(1)2^{o(\sqrt{k})} n^{O(1)}-time solution exists for either problem, which shows that our algorithm for this case is close to optimal. We also present an algorithm for both problems which is feasible in practice.Comment: full version (simplified and corrected); preliminary version appeared at ISAAC 2014; 14 pages, 4 figure

    The CMS RPC gas gain monitoring system: an overview and preliminary results

    Full text link
    The status of the CMS RPC Gas Gain Monitoring (GGM) system developed at the Frascati Laboratory of INFN (Istituto Nazionale di Fisica Nucleare) is reported on. The GGM system is a cosmic ray telescope based on small RPC detectors operated with the same gas mixture used by the CMS RPC system. The GGM gain and efficiency are continuously monitored on-line, thus providing a fast and accurate determination of any shift in working point conditions. The construction details and the first result of GGM commissioning are described.Comment: 8 pages, 9 figures, uses lnfprepCMS.sty, presented by L. Benussi at RPC07, Mumbai, INDIA 200

    Oscillation Induced Neutrino Asymmetry Growth in the Early Universe

    Get PDF
    We study the dynamics of active-sterile neutrino oscillations in the early universe using full momentum-dependent quantum-kinetic equations. These equations are too complicated to allow for an analytical treatment, and numerical solution is greatly complicated due to very pronounced and narrow structures in the momentum variable introduced by resonances. Here we introduce a novel dynamical discretization of the momentum variable which overcomes this problem. As a result we can follow the evolution of neutrino ensemble accurately well into the stable growing phase. Our results confirm the existence of a "chaotic region" of mixing parameters, for which the final sign of the asymmetry, and hence the SBBN prediction of He(4)-abundance cannot be accurately determined.Comment: 23 pages, 9 eps-figs, Latex, uses JHEP clas
    • 

    corecore