210 research outputs found

    The caCORE Software Development Kit: Streamlining construction of interoperable biomedical information services

    Get PDF
    BACKGROUND: Robust, programmatically accessible biomedical information services that syntactically and semantically interoperate with other resources are challenging to construct. Such systems require the adoption of common information models, data representations and terminology standards as well as documented application programming interfaces (APIs). The National Cancer Institute (NCI) developed the cancer common ontologic representation environment (caCORE) to provide the infrastructure necessary to achieve interoperability across the systems it develops or sponsors. The caCORE Software Development Kit (SDK) was designed to provide developers both within and outside the NCI with the tools needed to construct such interoperable software systems. RESULTS: The caCORE SDK requires a Unified Modeling Language (UML) tool to begin the development workflow with the construction of a domain information model in the form of a UML Class Diagram. Models are annotated with concepts and definitions from a description logic terminology source using the Semantic Connector component. The annotated model is registered in the Cancer Data Standards Repository (caDSR) using the UML Loader component. System software is automatically generated using the Codegen component, which produces middleware that runs on an application server. The caCORE SDK was initially tested and validated using a seven-class UML model, and has been used to generate the caCORE production system, which includes models with dozens of classes. The deployed system supports access through object-oriented APIs with consistent syntax for retrieval of any type of data object across all classes in the original UML model. The caCORE SDK is currently being used by several development teams, including by participants in the cancer biomedical informatics grid (caBIG) program, to create compatible data services. caBIG compatibility standards are based upon caCORE resources, and thus the caCORE SDK has emerged as a key enabling technology for caBIG. CONCLUSION: The caCORE SDK substantially lowers the barrier to implementing systems that are syntactically and semantically interoperable by providing workflow and automation tools that standardize and expedite modeling, development, and deployment. It has gained acceptance among developers in the caBIG program, and is expected to provide a common mechanism for creating data service nodes on the data grid that is under development

    Tumor taxonomy for the developmental lineage classification of neoplasms

    Get PDF
    BACKGROUND: The new "Developmental lineage classification of neoplasms" was described in a prior publication. The classification is simple (the entire hierarchy is described with just 39 classifiers), comprehensive (providing a place for every tumor of man), and consistent with recent attempts to characterize tumors by cytogenetic and molecular features. A taxonomy is a list of the instances that populate a classification. The taxonomy of neoplasia attempts to list every known term for every known tumor of man. METHODS: The taxonomy provides each concept with a unique code and groups synonymous terms under the same concept. A Perl script validated successive drafts of the taxonomy ensuring that: 1) each term occurs only once in the taxonomy; 2) each term occurs in only one tumor class; 3) each concept code occurs in one and only one hierarchical position in the classification; and 4) the file containing the classification and taxonomy is a well-formed XML (eXtensible Markup Language) document. RESULTS: The taxonomy currently contains 122,632 different terms encompassing 5,376 neoplasm concepts. Each concept has, on average, 23 synonyms. The taxonomy populates "The developmental lineage classification of neoplasms," and is available as an XML file, currently 9+ Megabytes in length. A representation of the classification/taxonomy listing each term followed by its code, followed by its full ancestry, is available as a flat-file, 19+ Megabytes in length. The taxonomy is the largest nomenclature of neoplasms, with more than twice the number of neoplasm names found in other medical nomenclatures, including the 2004 version of the Unified Medical Language System, the Systematized Nomenclature of Medicine Clinical Terminology, the National Cancer Institute's Thesaurus, and the International Classification of Diseases Oncolology version. CONCLUSIONS: This manuscript describes a comprehensive taxonomy of neoplasia that collects synonymous terms under a unique code number and assigns each tumor to a single class within the tumor hierarchy. The entire classification and taxonomy are available as open access files (in XML and flat-file formats) with this article

    mspecLINE: bridging knowledge of human disease with the proteome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Public proteomics databases such as PeptideAtlas contain peptides and proteins identified in mass spectrometry experiments. However, these databases lack information about human disease for researchers studying disease-related proteins. We have developed mspecLINE, a tool that combines knowledge about human disease in MEDLINE with empirical data about the detectable human proteome in PeptideAtlas. mspecLINE associates diseases with proteins by calculating the semantic distance between annotated terms from a controlled biomedical vocabulary. We used an established semantic distance measure that is based on the co-occurrence of disease and protein terms in the MEDLINE bibliographic database.</p> <p>Results</p> <p>The mspecLINE web application allows researchers to explore relationships between human diseases and parts of the proteome that are detectable using a mass spectrometer. Given a disease, the tool will display proteins and peptides from PeptideAtlas that may be associated with the disease. It will also display relevant literature from MEDLINE. Furthermore, mspecLINE allows researchers to select proteotypic peptides for specific protein targets in a mass spectrometry assay.</p> <p>Conclusions</p> <p>Although mspecLINE applies an information retrieval technique to the MEDLINE database, it is distinct from previous MEDLINE query tools in that it combines the knowledge expressed in scientific literature with empirical proteomics data. The tool provides valuable information about candidate protein targets to researchers studying human disease and is freely available on a public web server.</p

    Identification of Extracellular Segments by Mass Spectrometry Improves Topology Prediction of Transmembrane Proteins

    Get PDF
    Transmembrane proteins play crucial role in signaling, ion transport, nutrient uptake, as well as in maintaining the dynamic equilibrium between the internal and external environment of cells. Despite their important biological functions and abundance, less than 2% of all determined structures are transmembrane proteins. Given the persisting technical difficulties associated with high resolution structure determination of transmembrane proteins, additional methods, including computational and experimental techniques remain vital in promoting our understanding of their topologies, 3D structures, functions and interactions. Here we report a method for the high-throughput determination of extracellular segments of transmembrane proteins based on the identification of surface labeled and biotin captured peptide fragments by LC/MS/MS. We show that reliable identification of extracellular protein segments increases the accuracy and reliability of existing topology prediction algorithms. Using the experimental topology data as constraints, our improved prediction tool provides accurate and reliable topology models for hundreds of human transmembrane proteins

    Transcription Factors Mat2 and Znf2 Operate Cellular Circuits Orchestrating Opposite- and Same-Sex Mating in Cryptococcus neoformans

    Get PDF
    Cryptococcus neoformans is a human fungal pathogen that undergoes a dimorphic transition from a unicellular yeast to multicellular hyphae during opposite sex (mating) and unisexual reproduction (same-sex mating). Opposite- and same-sex mating are induced by similar environmental conditions and involve many shared components, including the conserved pheromone sensing Cpk1 MAPK signal transduction cascade that governs the dimorphic switch in C. neoformans. However, the homeodomain cell identity proteins Sxi1Ξ±/Sxi2a encoded by the mating type locus that are essential for completion of sexual reproduction following cell–cell fusion during opposite-sex mating are dispensable for same-sex mating. Therefore, identification of downstream targets of the Cpk1 MAPK pathway holds the key to understanding molecular mechanisms governing the two distinct developmental fates. Thus far, homology-based approaches failed to identify downstream transcription factors which may therefore be species-specific. Here, we applied insertional mutagenesis via Agrobacterium-mediated transformation and transcription analysis using whole genome microarrays to identify factors involved in C. neoformans differentiation. Two transcription factors, Mat2 and Znf2, were identified as key regulators of hyphal growth during same- and opposite-sex mating. Mat2 is an HMG domain factor, and Znf2 is a zinc finger protein; neither is encoded by the mating type locus. Genetic, phenotypic, and transcriptional analyses of Mat2 and Znf2 provide evidence that Mat2 is a downstream transcription factor of the Cpk1 MAPK pathway whereas Znf2 functions as a more terminal hyphal morphogenesis determinant. Although the components of the MAPK pathway including Mat2 are not required for virulence in animal models, Znf2, as a hyphal morphology determinant, is a negative regulator of virulence. Further characterization of these elements and their target circuits will reveal genes controlling biological processes central to fungal development and virulence

    An analysis-ready and quality controlled resource for pediatric brain white-matter research

    Get PDF
    We created a set of resources to enable research based on openly-available diffusion MRI (dMRI) data from the Healthy Brain Network (HBN) study. First, we curated the HBN dMRI data (N = 2747) into the Brain Imaging Data Structure and preprocessed it according to best-practices, including denoising and correcting for motion effects, susceptibility-related distortions, and eddy currents. Preprocessed, analysis-ready data was made openly available. Data quality plays a key role in the analysis of dMRI. To optimize QC and scale it to this large dataset, we trained a neural network through the combination of a small data subset scored by experts and a larger set scored by community scientists. The network performs QC highly concordant with that of experts on a held out set (ROC-AUC = 0.947). A further analysis of the neural network demonstrates that it relies on image features with relevance to QC. Altogether, this work both delivers resources to advance transdiagnostic research in brain connectivity and pediatric mental health, and establishes a novel paradigm for automated QC of large datasets
    • …
    corecore