1,020 research outputs found
Integrated Support for Handoff Management and Context-Awareness in Heterogeneous Wireless Networks
The overwhelming success of mobile devices and wireless
communications is stressing the need for the development of
mobility-aware services. Device mobility requires services
adapting their behavior to sudden context changes and being
aware of handoffs, which introduce unpredictable delays and
intermittent discontinuities. Heterogeneity of wireless
technologies (Wi-Fi, Bluetooth, 3G) complicates the situation,
since a different treatment of context-awareness and handoffs is
required for each solution. This paper presents a middleware
architecture designed to ease mobility-aware service
development. The architecture hides technology-specific
mechanisms and offers a set of facilities for context awareness
and handoff management. The architecture prototype works with
Bluetooth and Wi-Fi, which today represent two of the most
widespread wireless technologies. In addition, the paper discusses
motivations and design details in the challenging context of
mobile multimedia streaming applications
Sensible heat flux and boundary layer depth measurements by Doppler SODAR and sonic anemometer data
A validation of a simple mixed-layer similarity relationship, firstly proposed by Panofsky and McCormick (1960), is presented for wind speeds up to 7 ms21 and over an uneven terrain. The surface heat flux and the Planetary
Boundary Layer depth, zi, are retrieved from this relationship, by using SODAR measurements of the vertical velocity variance s 2 w, under the hypothesis that the
heat flux linearly decreases with height. All the measurements are relative to days characterized by
high-pressure conditions, during periods of well-developed
convection. The values of the surface heat flux obtained from such a method are compared with those obtained by applying the eddy correlation technique to the vertical wind velocities and virtual temperatures measured by a sonic anemometer. The values of zi obtained from the same relationship are compared with the height of the lowest inversion layer estimated from the facsimile record of the echoes received by the vertical antenna of the SODAR. The spectral behavior of vertical and longitudinal wind velocity from the anemometer and the SODAR is examined, too. In such a way an independent estimate of zi is obtained from the position of the spectral maximum
A combined Rayleigh-Raman lidar for measurements of tropospheric water vapour and aerosol profiles
The receiver of the Differential Absorption Lidar system of the University of L’Aquila (Italy) has been upgraded for the detection of Raman scattering from nitrogen and water vapour induced by XeCl and XeF excimer laser lines. In this
configuration, only the XeF source is activated, so we can measure the tropospheric water vapour mixing ratio profiles with a height resolution of 300 m and 10 min in time. The lower limit sensitivity for the mixing ratio of water vapour is about 2 Q1024 and the precision ranges between 5% at 2 km and 50% at 9 km. The aerosol back-scattering ratio profiles can be measured with the same altitude and time
resolution up to the lower stratosphere, the relative error is below 5% in the troposphere and about 30% at the highest altitudes. Comparisons with coincident PTU balloon-sondes show that the performances of the system in measuring the
tropospheric water vapour are well calibrated for studying the water vapour evolution and cloud formation in the troposphere
Increased optical pathlength through aqueous media for the infrared microanalysis of live cells
The study of live cells using Fourier transform infrared spectroscopy (FTIR) and FTIR microspectroscopy (FT-IRMS) intrinsically yields more information about cell metabolism than comparable experiments using dried or chemically fixed samples. There are, however, a number of barriers to obtaining high-quality vibrational spectra of live cells, including correction for the significant contributions of water bands to the spectra, and the physical stresses placed upon cells by compression in short pathlength sample holders. In this study, we present a water correction method that is able to result in good-quality cell spectra from water layers of 10 and 12 μm and demonstrate that sufficient biological detail is retained to separate spectra of live cells based upon their exposure to different novel anti-cancer agents. The IR brilliance of a synchrotron radiation (SR) source overcomes the problem of the strong water absorption and provides cell spectra with good signal-to-noise ratio for further analysis. Supervised multivariate analysis (MVA) and investigation of average spectra have shown significant separation between control cells and cells treated with the DNA cross-linker PL63 on the basis of phosphate and DNA-related signatures. Meanwhile, the same control cells can be significantly distinguished from cells treated with the protein kinase inhibitor YA1 based on changes in the amide II region. Each of these separations can be linked directly to the known biochemical mode of
action of each agent.
Keywords: Synchrotron radiation (SR), Fourier transform infrared spectroscopy (FTIR), Infrared microspectroscopy (IRMS), Cancer, Single cell, Drug-cell interaction
Seminario di Linguistica e Didattica delle Lingue. Scritti in onore degli ottant’anni di Giovanni Freddi
Include, di Balboni: “La glottodidattica veneziana: una ‘scuola’?”, pp. 19-54
Live single cell analysis using synchrotron FTIR microspectroscopy: development of a simple dynamic flow system for prolonged sample viability
Synchrotron radiation Fourier transform infrared microspectroscopy (SR-microFTIR) of live biological cells has the potential to provide far greater biochemical and morphological detail than equivalent studies using dehydrated, chemically-fixed single cells. Attempts to measure live cells using microFTIR are complicated by the aqueous environment required and corresponding strong infrared absorbance by water. There is also the additional problem of the limited lifetime of the cells outside of their preferred culture environment. In this work, we outline simple, cost-effective modifications to a commercially available liquid sample holder to perform single live cell analysis under an IR microscope and demonstrate cell viability up to at least 24 hours. A study using this system in which live cells have been measured at increasing temperature has shown spectral changes in protein bands attributed to α-β transition, consistent with other published work, and proves the ability to simultaneously induce and measure biochemical changes. An additional study of deuterated palmitic acid (D31-PA) uptake at different timepoints has made use of over 200 individual IR spectra collected over ∼4 hours, taking advantage of the ability to maintain viable cell samples for longer periods of time in the measurement environment, and therefore acquire greatly increased numbers of spectra without compromising on spectral quality. Further developments of this system are planned to widen the range of possible experiments, and incorporate more complex studies, including drug-cell interaction
The action of all-trans-retinoic acid (ATRA) and synthetic retinoid analogues (EC19 and EC23) on human pluripotent stem cells differentiation investigated using single cell infrared microspectroscopy
All trans-retinoic acid (ATRA) is widely used to direct the differentiation of cultured stem cells. When exposed to the pluripotent human embryonal carcinoma (EC) stem cell line, TERA2.cl.SP12, ATRA induces ectoderm differentiation and the formation of neuronal cell types. We have previously generated synthetic analogues of retinoic acid (EC23 and EC19) which also induce the differentiation of EC cells. Even though EC23 and EC19 have similar chemical structures, they have differing biochemical effects in terms of EC cell differentiation. EC23 induces neuronal differentiation in a manner similar to ATRA, whereas EC19 directs the cells to form epithelial-like derivatives. Previous MALDI-TOF MS analysis examined the response of TERA2.cl.SP12 cells after exposure to ATRA, EC23 and EC19 and further demonstrated the similarly in the effect of ATRA and EC23 activity whilst responses to EC19 were very different. In this study, we show that Fourier Transform Infrared Micro-Spectroscopy (FT-IRMS) coupled with appropriate scatter correction and multivariate analysis can be used as an effective tool to further investigate the differentiation of human pluripotent stem cells and monitor the alternative affects different retinoid compounds have on the induction of differentiation. FT-IRMS detected differences between cell populations as early as 3 days of compound treatment. Populations of cells treated with different retinoid compounds could easily be distinguished from one another during the early stages of cell differentiation. These data demonstrate that FT-IRMS technology can be used as a sensitive screening technique to monitor the status of the stem cell phenotype and progression of differentiation along alternative pathways in response to different compounds
Are there better ways to quantify flood risk to life?
Risk to life is a critical consideration in flood risk management but quantify those risks have long been a vexed issue. The Australian National Committee on Large Dams (ANCOLD, 2003) recommends the methodology developed by Graham (1999) for estimating loss of life from dam failure. In the absence of other accepted methodologies this has sometimes been applied to loss of life from flooding generally but Graham himself has stressed on more than one occasion that the method has been developed purely for dam failure scenarios and is not suitable for other flood events (Graham, 2013).
In recent years more sophisticated models for the estimation of loss of life in any flood event have been created. One of the most advanced of these was developed by BC Hydro in Canada and recently commercialised as the Life Safety Model by HR Wallingford in the UK. It is an agent based model which integrates dynamic 2D flood modelling with a flood warning dissemination model, a dynamic traffic model and consequence analysis of the interaction of floodwaters with people, vehicles and buildings to track the warning, response, evacuation and fate of each individual on a floodplain.
Molino Stewart and HR Wallingford were engaged by the NSW State Emergency Service to pilot the use of this model at Windsor on the Hawkesbury Nepean Floodplain and evaluate its utility for both evacuation planning and life risk quantification. This paper presents the findings of that work
Towards microfluidic reactors for in situ synchrotron infrared studies
Anodically bonded etched silicon microfluidic devices that allow infrared spectroscopic measurement of solutions are reported. These extend spatially well-resolved in situ infrared measurement to higher temperatures and pressures than previously reported, making them useful for effectively time-resolved measurement of realistic catalytic processes. A data processing technique necessary for the mitigation of interference fringes caused by multiple reflections of the probe beam is also describe
- …