3,921 research outputs found

    In regard to Minniti et al.: "Current status and recent advances in resection cavity irradiation of brain metastases — roundup to cover all angles"

    Get PDF
    We read with great interest the recent review, entitled “Current status and recent advances in resection cavity irradiation of brain metastases”. It is a comprehensive summary of currently available techniques for treatment of post-resection cavity in patients with this diagnosis. We would like to complement this manuscript by including intraoperative techniques as other viable approaches in the management of these patients

    Venous Manometry as an Adjunct for Diagnosis and Multimodal Management of Intracranial Hypertension due to Meningioma Compressing Sigmoid Sinus

    Get PDF
    Intracranial venous hypertension is a rare presentation of meningiomas in the transversesigmoid sinus region. We describe a case of a young patient presenting with intracranial hypertension due to a meningioma causing compression of the dominant sigmoid sinus. We were able to document the cerebral venous pressure gradient across the lesion confirming our hypothesis that compression of the sigmoid sinus from the meningioma was the cause of intracranial hypertension. The patient is a 17-year-old male who presented with intracranial hypertension due to meningioma at the right dominant sigmoid sinus, which was treated by a Simpson grade IV surgical resection followed by stereotactic radiosurgery. Following treatment, his papilledema resolved and he remains symptom-free at 18 months. In conclusion, venous manometry is a useful adjunct to diagnose intracranial hypertension in non-idiopathic causes of intracranial hypertension. A multimodal management approach of intracranial hypertension due to outflow obstruction from the dominant sinus led to an excellent recovery on follow up

    Gamma Knife Radiosurgery for Arteriovenous Malformations Using a Four- Dimensional Dynamic Volume Computed Tomography Angiography Planning System as an Alternative to Traditional Catheter Angiogram

    Get PDF
    Background Gamma knife radiosurgery (GKRS) remains a critical intervention in the long-term management of arteriovenous malformations (AVMs). For planning a treatment, identification of the nidus is essential, and it is dependent on high-resolution blood flow imaging, usually in the form of a traditional angiogram. The development of dynamic 320-slice computed tomography (CT) angiography has offered a noninvasive alternative to intra-arterial fluoroscopic imaging, and it is capable of providing equivalent temporal resolution. In this study, we describe the feasibility of using four-dimensional CT angiography (4D-CTA) in GKRS planning for AVM treatment and a comparative analysis with a traditional angiogram. Methods A retrospective review was performed on AVM patients treated via GKRS with a 4D-CTA prior to the day of treatment, on the day of treatment, or with a day-of-treatment angiogram. Treatment times, along with total times in the Leksell® coordinate frame G, were obtained from the medical records. The frame-on time was calculated by subtracting the treatment time from the total time starting from application to removal, and the statistical analysis was performed across groups using analysis of variance (ANOVA). All treatments were performed on the Perfexion™ model with a dynamic flow imaging procured via a 320-slice CT scanner or traditional angiography platform. Results Some 27 patients underwent a total of 29 GKRS procedures for AVM treatment at our institution between September 2011 and January 2017. Mean age at the time of treatment was 35.5 (6-65) years, and male:female ratio was 5:4. Some 12 patients had 4D-CTA performed prior to the day of treatment, eight patients had the same CTA completed after frame placement on the day of treatment, while seven patients underwent traditional angiography. The mean frame-on times of each group were 190, 336, and 426 minutes, respectively (p \u3c 0.0001). No procedures were aborted based on the image quality. Conclusions 4D-CTA is an effective tool in identifying the AVM nidus for GKRS planning. These studies can be performed prior to the day of treatment, allowing for a significant reduction in frame-on time and eliminating the risk of angiogram complication on the day of GKRS

    Efficacy of Stereotactic Radiosurgery in Patients with Multiple Metastases: Importance of Volume Rather Than Number of Lesions

    Get PDF
    The role of stereotactic radiosurgery (SRS) in the treatment of multiple brain metastases is controversial. While whole brain radiation therapy (WBRT) has historically been the mainstay of treatment, its value is increasingly being questioned as emerging data supports that SRS alone can provide comparable therapeutic outcomes for limited (one to three) intracranial metastases with fewer adverse effects, including neurocognitive decline. Multiple recent studies have also demonstrated that patients with multiple (\u3e 3) intracranial metastases with a low overall tumor volume have a favorable therapeutic response to SRS, with no significant difference compared to patients with limited metastases. Herein, we present a patient with previously controlled breast cancer who presented with multiple recurrences of intracranial metastases but low total intracranial tumor volume each time. This patient underwent SRS alone for a total of 40 metastatic lesions over three separate procedures with good local control and without any significant cognitive toxicity. The patient eventually opted for enrollment in the NRG-CC001 clinical trial after multiple cranial recurrences. She received conventional WBRT with six months of memantine and developed significant neurocognitive side effects. This case highlights the growing body of literature supporting the role of SRS alone in the management of multiple brain metastases and the importance of maximizing neurocognition as advances in systemic therapies prolong survival in Stage IV cancer

    Study of single muons with the Large Volume Detector at Gran Sasso Laboratory

    Get PDF
    The present study is based on the sample of about 3 mln single muons observed by LVD at underground Gran Sasso Laboratory during 36500 live hours from June 1992 to February 1998. We have measured the muon intensity at slant depths from 3 km w.e. to 20 km w.e. Most events are high energy downward muons produced by meson decay in the atmosphere. The analysis of these muons has revealed the power index of pion and kaon spectrum: 2.76 \pm 0.05. The reminders are horizontal muons produced by the neutrino interactions in the rock surrounding LVD. The value of this flux is obtained. The results are compared with Monte Carlo simulations and the world data.Comment: 13 pages, 2 figures, accepted for publication in "Physics of Atomic Nuclei

    Muon `Depth -- Intensity' Relation Measured by LVD Underground Experiment and Cosmic-Ray Muon Spectrum at Sea Level

    Get PDF
    We present the analysis of the muon events with all muon multiplicities collected during 21804 hours of operation of the first LVD tower. The measured angular distribution of muon intensity has been converted to the `depth -- vertical intensity' relation in the depth range from 3 to 12 km w.e.. The analysis of this relation allowed to derive the power index, γ\gamma, of the primary all-nucleon spectrum: γ=2.78±0.05\gamma=2.78 \pm 0.05. The `depth -- vertical intensity' relation has been converted to standard rock and the comparison with the data of other experiments has been done. We present also the derived vertical muon spectrum at sea level.Comment: 7 pages, 3 figures, to be published on Phys. Rev.

    Upper Limit on the Prompt Muon Flux Derived from the LVD Underground Experiment

    Get PDF
    We present the analysis of the muon events with all muon multiplicities collected during 21804 hours of operation of the first LVD tower. The measured depth-angular distribution of muon intensities has been used to obtain the normalization factor, A, the power index, gamma, of the primary all-nucleon spectrum and the ratio, R_c, of prompt muon flux to that of pi-mesons - the main parameters which determine the spectrum of cosmic ray muons at the sea level. The value of gamma = 2.77 +/- 0.05 (68% C.L.) and R_c < 2.0 x 10^-3 (95% C.L.) have been obtained. The upper limit to the prompt muon flux favours the models of charm production based on QGSM and the dual parton model.Comment: 10 pages, 4 figures, RevTex. To appear in Phys. Rev.

    New Eco-gas mixtures for the Extreme Energy Events MRPCs: results and plans

    Full text link
    The Extreme Energy Events observatory is an extended muon telescope array, covering more than 10 degrees both in latitude and longitude. Its 59 muon telescopes are equipped with tracking detectors based on Multigap Resistive Plate Chamber technology with time resolution of the order of a few hundred picoseconds. The recent restrictions on greenhouse gases demand studies for new gas mixtures in compliance with the relative requirements. Tetrafluoropropene is one of the candidates for tetrafluoroethane substitution, since it is characterized by a Global Warming Power around 300 times lower than the gas mixtures used up to now. Several mixtures have been tested, measuring efficiency curves, charge distributions, streamer fractions and time resolutions. Results are presented for the whole set of mixtures and operating conditions, %. A set of tests on a real EEE telescope, with cosmic muons, are being performed at the CERN-01 EEE telescope. The tests are focusing on identifying a mixture with good performance at the low rates typical of an EEE telescope.Comment: 8 pages, 6 figures, proceedings for the "XIV Workshop on Resistive Plate Chambers and Related Detectors" (19-23 February 2018), Puerto Vallarta, Jalisco State, Mexic

    Functionals of the Brownian motion, localization and metric graphs

    Full text link
    We review several results related to the problem of a quantum particle in a random environment. In an introductory part, we recall how several functionals of the Brownian motion arise in the study of electronic transport in weakly disordered metals (weak localization). Two aspects of the physics of the one-dimensional strong localization are reviewed : some properties of the scattering by a random potential (time delay distribution) and a study of the spectrum of a random potential on a bounded domain (the extreme value statistics of the eigenvalues). Then we mention several results concerning the diffusion on graphs, and more generally the spectral properties of the Schr\"odinger operator on graphs. The interest of spectral determinants as generating functions characterizing the diffusion on graphs is illustrated. Finally, we consider a two-dimensional model of a charged particle coupled to the random magnetic field due to magnetic vortices. We recall the connection between spectral properties of this model and winding functionals of the planar Brownian motion.Comment: Review article. 50 pages, 21 eps figures. Version 2: section 5.5 and conclusion added. Several references adde
    • …
    corecore