1,701 research outputs found
Molecular orientation entanglement and temporal Bell-type inequalities
We detail and extend the results of [Milman {\it et al.}, Phys. Rev. Lett.
{\bf 99}, 130405 (2007)] on Bell-type inequalities based on correlations
between measurements of continuous observables performed on trapped molecular
systems. We show that for some observables with a continuous spectrum which is
bounded, one is able to construct non-locality tests sharing common properties
with those for two-level systems. The specific observable studied here is
molecular spatial orientation, and it can be experimentally measured for single
molecules, as required in our protocol. We also provide some useful general
properties of the derived inequalities and study their robustness to noise.
Finally, we detail possible experimental scenarii and analyze the role played
by different experimental parameters.Comment: 10 pages and 5 figure
Probably Safe or Live
This paper presents a formal characterisation of safety and liveness
properties \`a la Alpern and Schneider for fully probabilistic systems. As for
the classical setting, it is established that any (probabilistic tree) property
is equivalent to a conjunction of a safety and liveness property. A simple
algorithm is provided to obtain such property decomposition for flat
probabilistic CTL (PCTL). A safe fragment of PCTL is identified that provides a
sound and complete characterisation of safety properties. For liveness
properties, we provide two PCTL fragments, a sound and a complete one. We show
that safety properties only have finite counterexamples, whereas liveness
properties have none. We compare our characterisation for qualitative
properties with the one for branching time properties by Manolios and Trefler,
and present sound and complete PCTL fragments for characterising the notions of
strong safety and absolute liveness coined by Sistla
Quantum phase gate and controlled entanglement with polar molecules
We propose an alternative scenario for the generation of entanglement between rotational quantum states of two polar molecules. This entanglement arises from dipole-dipole interaction, and is controlled by a sequence of laser pulses simultaneously exciting both molecules. We study the efficiency of the process, and discuss possible experimental implementations with cold molecules trapped in optical lattices or in solid matrices. Finally, various entanglement detection procedures are presented, and their suitability for these two physical situations is analyzed
Détermination à l'aide d'un modèle récepteur des zones sources à l'origine des concentrations mesurées dans les précipitations collectées en trois sites du réseau MERA (France)
Ces travaux s'inscrivent dans le cadre du programme national de MEsure des Retombées Atmosphériques (MERA). Ils portent sur la recherche de l'origine des précipitations collectées entre 1997 et 1999 dans trois (Morvan, Iraty, Le Casset) des onze stations du réseau MERA localisées en différents points du territoire français. Deux méthodes statistiques ont été utilisées dans cette étude. Les régions à l'origine des fortes concentrations mesurées au site récepteur ont d'abord été déterminées à l'aide d'un modèle (méthode de Seibert) combinant les mesures réalisées sur site et les rétrotrajectoires de masses d'air puis, dans un second temps les différents profils de transport atmosphérique, leur fréquence et concentrations associées ont été évaluées à l'aide d'une classification par Nuées Dynamiques (méthode K-means/distance Euclidienne simple) des rétrotrajectoires de masses d'air. Le test de Kruskal-Wallis a été utilisé pour vérifier si les médianes des concentrations associées à chaque classe sont statistiquement différentes. L'étude réalisée à Iraty (Pyrénées) et au Casset (Alpes) a montré que ces deux stations sont influencées différemment du Morvan. Plus exactement, ces deux sites ne sont pas, ou pratiquement pas, influencés par les zones d'Europe centrale ou du Nord-Ouest fortement émettrices de SO2, de NOx et de NH3. Seul le pH des précipitations collectées à Iraty semble dépendre des émissions de SO2 et de NOx d'une de ces zones. Iraty et le Casset sont très influencées par les émissions anthropiques et par les poussières d'origine terrestres en provenance d'Afrique du Nord. Néanmoins, les niveaux de concentrations mesurés dans les flux en provenance d'Afrique du Nord sont similaires pour Iraty, le Casset et le Morvan (sauf en ions calcium, pour lequel le Casset et Iraty montrent de fortes concentrations). Une autre région européenne peut influencer les niveaux en composés acidifiants mesurés au Casset, il s'agit de l'Italie et de la zone localisée au niveau de l'ex-Yougoslavie. Mais, les niveaux de concentrations qui en résultent sont faibles par rapport à ceux mesurés dans certains flux arrivant au Morvan.The chemistry of precipitation in France was examined using data from the French atmospheric deposition network (MERA). In order to examine the source-receptor relationships responsible for acid rain at three background sites in France, a receptor-oriented model was applied to the precipitation data collected from 1997 to 1999. This methodology combined precipitation and chemical data with air parcel backward trajectories to establish concentration field maps of likely contributing sources. Then, a clustering technique using partitioning methods (K-means/Euclidian distance) was performed to backward trajectories and the distributions of mixing samples associated with backward trajectories in each cluster were compared. The Kruskal-Wallis test was used to verify that the concentration medians associated with each cluster were statistically significant. The results of this study demonstrated that two stations (Iraty and le Casset) were not influenced by the same sources as Morvan. Specifically, these sites were less influenced by high emissions from Central or Northwestern Europe when compared to Morvan. Only the pH seemed under the influence of SO2 and NOx emissions from one of these areas. Iraty and Le casset are very influenced by anthropogenic emissions and the crustal sources around the Mediterranean Basin and North Africa. Other European areas (e.g. Italy) can influence the concentrations recorded at Le Casset but the levels of concentration are lower than those measured at Morvan.This paper represents a complete statistical analysis of wet-only deposition chemistry data for three stations (Iraty, Le Casset and Morvan). Two statistical methods were used in this study. In order to examine the source-receptor relationships responsible for acid rain at these three background sites in France, a receptor-oriented model was applied to the precipitation data collected from 1997 to 1999. This methodology combined chemical data with air parcel backward trajectories to establish concentration field maps of likely contributing sources. This receptor-oriented model was developed by Seibert and it assumes that if a trajectory endpoint falls in a grid cell (i,j), the air mass is assumed to collect components emitted in this cell and once the components are incorporated, they are transported along the trajectory to the receptor site. This model doesn't take into account the atmospheric diffusion and the removal mechanisms occurring during the trajectory from the sources to the receptor. Finally, a concentration field map for the selected species was calculated taking into account all grid cells. For mapping, the grid cells counting fewer than 10 endpoints were not taken in consideration because the confidence of their results was considered too low. The role of three-dimensional backward trajectories is fundamental, so we used three different information sources: the French Institute of Meteorology, Météo-France; the British Atmospheric Data Centre (BADC); and the Atmospheric Environment Service Long Range Transport model of Air Pollution (AES-LRTAP), Canada. These trajectory models were compared for different chemical species. All data were projected in the EMEP grid (150 x 150 km) for establishment of the concentration field map. A clustering technique by partitioning methods (K-means/Euclidian distance) was performed on backward trajectories and the distributions of mixing samples associated with backward trajectories in each cluster were compared. The Kruskal-Wallis test was used to verify that the median concentrations associated with each cluster were statistically significant.The results of this study for Morvan determined five classes of backward trajectories associated with the precipitation collected at this station located in the centre of France. The fluxes from SW and WSW sectors contribute for 52% of events, while the fluxes of NW and E contribute for 31% of events but are mainly responsible for high concentrations of sulphates, nitrates, ammonium and hydronium ion. Regions found to be responsible for rain events coincide with European regions known for their high anthropogenic emissions of SO2 and NOx (Great Britain, North of France, Belgium, The Netherlands and the North of sea).The results for Iraty (South of France) yielded five classes of backward trajectories associated with the precipitation collected in this station. The fluxes from W sectors (NNW, NW, W and WSW) were responsible for 71% of events, while the flux of S (low wind) was responsible for 29% of events but is mainly responsible for high concentrations of sulphates, nitrates, ammonium and calcium. High concentrations of hydronium ion were identified in the NNW sector.The results for Le Casset (East region and mountainous) gave four classes of backward trajectories associated with the precipitation collected in this station. The fluxes from W and WSW sectors were responsible for 35% of events, while the flux of SSW was responsible for 43% and the flux from the SE was responsible for 22% of events. This last sector was mainly responsible for high concentrations of sulphates, nitrates, ammonium and calcium. The concentrations measured at this station were low. Regions found to be responsible for rain events coincide with southern and eastern areas known for their high anthropogenic emissions of SO2 and NOx (north Africa, northern Italy, Yugoslavia).All these results demonstrate that the Iraty and Le Casset stations were not influenced by the same sources as Morvan. Specifically, these sites were less influenced by the high emissions from central or northwestern Europe than Morvan. Only the measurement of pH seemed to be under the influence of SO2 and NOx emissions of one of these areas. Iraty and Le Casset were very influenced by the anthropogenic emissions and the crustal sources around the Mediterranean Basin and North Africa. Other European areas (e.g., Italy) can influence the concentrations recorded at Le Casset but the levels were lower than those measured at Morvan. A relation between sulphates, nitrates and ammonium was identified for Morvan and Le Casset. This observation suggests that aerosol transport of NH4 HSO4, (NH4)2 SO4 and NH4 NO3 is occurring
Coherent Control of Isotope Separation in HD+ Photodissociation by Strong Fields
The photodissociation of the HD+ molecular ion in intense short- pulsed
linearly polarized laser fields is studied using a time- dependent wave-packet
approach where molecular rotation is fully included. We show that applying a
coherent superposition of the fundamental radiation with its second harmonic
can lead to asymmetries in the fragment angular distributions, with significant
differences between the hydrogen and deuterium distributions in the long
wavelength domain where the permanent dipole is most efficient. This effect is
used to induce an appreciable isotope separation.Comment: Physical Review Letters, 1995 (in press). 4 pages in revtex format, 3
uuencoded figures. Full postcript version available at:
http://chemphys.weizmann.ac.il/~charron/prl.ps or
ftp://scipion.ppm.u-psud.fr/coherent.control/prl.p
A hybrid metal/semiconductor electron pump for quantum metrology
Electron pumps capable of delivering a current higher than 100pA with
sufficient accuracy are likely to become the direct mise en pratique of the
possible new quantum definition of the ampere. Furthermore, they are essential
for closing the quantum metrological triangle experiment which tests for
possible corrections to the quantum relations linking e and h, the electron
charge and the Planck constant, to voltage, resistance and current. We present
here single-island hybrid metal/semiconductor transistor pumps which combine
the simplicity and efficiency of Coulomb blockade in metals with the
unsurpassed performances of silicon switches. Robust and simple pumping at
650MHz and 0.5K is demonstrated. The pumped current obtained over a voltage
bias range of 1.4mV corresponds to a relative deviation of 5e-4 from the
calculated value, well within the 1.5e-3 uncertainty of the measurement setup.
Multi-charge pumping can be performed. The simple design fully integrated in an
industrial CMOS process makes it an ideal candidate for national measurement
institutes to realize and share a future quantum ampere
Bose-Einstein condensation in dark power-law laser traps
We investigate theoretically an original route to achieve Bose-Einstein
condensation using dark power-law laser traps. We propose to create such traps
with two crossing blue-detuned Laguerre-Gaussian optical beams. Controlling
their azimuthal order allows for the exploration of a multitude of
power-law trapping situations in one, two and three dimensions, ranging from
the usual harmonic trap to an almost square-well potential, in which a
quasi-homogeneous Bose gas can be formed. The usual cigar-shaped and
disk-shaped Bose-Einstein condensates obtained in a 1D or 2D harmonic trap take
the generic form of a "finger" or of a "hockey puck" in such Laguerre-Gaussian
traps. In addition, for a fixed atom number, higher transition temperatures are
obtained in such configurations when compared with a harmonic trap of same
volume. This effect, which results in a substantial acceleration of the
condensation dynamics, requires a better but still reasonable focusing of the
Laguerre-Gaussian beams
Two-Color Coherent Photodissociation of Nitrogen Oxide in Intense Laser Fields
A simple one-dimensional semi-classical model with a Morse potential is used
to investigate the possibility of two-color infrared multi-photon dissociation
of vibrationally excited nitrogen oxide. The amplitude ratio effects and
adiabatic effects are investigated. Some initial states are found to have
thresholds smaller than expected from single-mode considerations and multiple
thresholds exist for initial states up to 32.
PACS: 42.50.HzComment: 3 pages, old papers, add source files to replace original postscrip
Theoretical analysis of the implementation of a quantum phase gate with neutral atoms on atom chips
We present a detailed, realistic analysis of the implementation of a proposal
for a quantum phase gate based on atomic vibrational states, specializing it to
neutral rubidium atoms on atom chips. We show how to create a double--well
potential with static currents on the atom chips, using for all relevant
parameters values that are achieved with present technology. The potential
barrier between the two wells can be modified by varying the currents in order
to realize a quantum phase gate for qubit states encoded in the atomic external
degree of freedom. The gate performance is analyzed through numerical
simulations; the operation time is ~10 ms with a performance fidelity above
99.9%. For storage of the state between the operations the qubit state can be
transferred efficiently via Raman transitions to two hyperfine states, where
its decoherence is strongly inhibited. In addition we discuss the limits
imposed by the proximity of the surface to the gate fidelity.Comment: 9 pages, 5 color figure
- …