31 research outputs found
Disk Detective: Discovery of New Circumstellar Disk Candidates through Citizen Science
The Disk Detective citizen science project aims to find new stars with 22
micron excess emission from circumstellar dust using data from NASA's WISE
mission. Initial cuts on the AllWISE catalog provide an input catalog of
277,686 sources. Volunteers then view images of each source online in 10
different bands to identify false-positives (galaxies, background stars,
interstellar matter, image artifacts, etc.). Sources that survive this online
vetting are followed up with spectroscopy on the FLWO Tillinghast telescope.
This approach should allow us to unleash the full potential of WISE for finding
new debris disks and protoplanetary disks. We announce a first list of 37 new
disk candidates discovered by the project, and we describe our vetting and
follow-up process. One of these systems appears to contain the first debris
disk discovered around a star with a white dwarf companion: HD 74389. We also
report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137,
and HD 218546) and a new detection of 22 micron excess around a previously
known debris disk host star, HD 22128.Comment: 50 pages, accepted for publication in the Astrophysical Journa
Follow-up Imaging of Disk Candidates from the Disk Detective Citizen Science Project: New Discoveries and False Positives in WISE Circumstellar Disk Surveys
The Disk Detective citizen science project aims to find new stars with excess 22 m emission from circumstellar dust in the All WISE data release from the Wide-field Infrared Survey Explorer. We evaluated 261 Disk Detective objects of interest with imaging with the Robo-AO adaptive optics instrument on the 1.5 m telescope at Palomar Observatory and with RetroCam on the 2.5 m du Pont Telescope at Las Campanas Observatory to search for background objects at 0 1512 separations from each target. Our analysis of these data leads us to reject 7% of targets. Combining this result with statistics from our online image classification efforts implies that at most7.9%0.2% of All WISE-selected infrared excesses are good disk candidates. Applying our false-positive rates to other surveys, we find that the infrared excess searches of McDonald et al. and Marton et al. all have false-positiverates >70%. Moreover, we find that all 13 disk candidates in Theissen & West with W4 signal-to-noise ratio >3are false positives. We present 244 disk candidates that have survived vetting by follow-up imaging. Of these,213 are newly identified disk systems. Twelve of these are candidate members of comoving pairs based on Gaia astrometry, supporting the hypothesis that warm dust is associated with binary systems. We also note the discovery of 22 m excess around two known members of the ScorpiusCentaurus association, and we identifyknown disk host WISEA J164540.79-310226.6 as a likely Sco-Cen member. Thirty of these disk candidates arecloser than 125 pc (including 26 debris disks), making them good targets for both direct-imaging exoplanetsearches
Follow-up Imaging of Disk Candidates from the Disk Detective Citizen Science Project: New Discoveries and False Positives in WISE Circumstellar Disk Surveys
The Disk Detective citizen science project aims to find new stars with excess 22 μm emission from circumstellar dust in the AllWISE data release from the Wide-field Infrared Survey Explorer. We evaluated 261 Disk Detective objects of interest with imaging with the Robo-AO adaptive optics instrument on the 1.5 m telescope at Palomar Observatory and with RetroCam on the 2.5 m du Pont Telescope at Las Campanas Observatory to search for background objects at 0.”15–12'' separations from each target. Our analysis of these data leads us to reject 7% of targets. Combining this result with statistics from our online image classification efforts implies that at most 7.9% ± 0.2% of AllWISE-selected infrared excesses are good disk candidates. Applying our false-positive rates to other surveys, we find that the infrared excess searches of McDonald et al. and Marton et al. all have false-positive rates >70%. Moreover, we find that all 13 disk candidates in Theissen & West with W4 signal-to-noise ratio >3 are false positives. We present 244 disk candidates that have survived vetting by follow-up imaging. Of these, 213 are newly identified disk systems. Twelve of these are candidate members of comoving pairs based on Gaia astrometry, supporting the hypothesis that warm dust is associated with binary systems. We also note the discovery of 22 μm excess around two known members of the Scorpius–Centaurus association, and we identify known disk host WISEA J164540.79-310226.6 as a likely Sco-Cen member. Thirty of these disk candidates are closer than ~125 pc (including 26 debris disks), making them good targets for both direct-imaging exoplanet searches
Comparison of pixantrone-based regimen (CPOP-R) with doxorubicin-based therapy (CHOP-R) for treatment of diffuse large B-cell lymphoma
Pixantrone is an aza-anthracenedione with enhanced, preclinical antitumor activity and reduced cardiotoxicity compared with doxorubicin. We compared the efficacy and toxic effect of CPOP-R (substituting pixantrone for doxorubicin) against CHOP-R in untreated, diffuse large B-cell lymphoma (DLBCL) patients. The primary objective was to demonstrate non-inferiority of CPOP-R by complete response/complete response unconfirmed (CR/CRu) rate. The CR/CRu rate for CPOP-R was 75% versus 84% for CHOP-R. Three-year overall survival was lower for CPOP-R (69% versus 85%) (P = 0.029). Median progression-free survival (PFS) was not reached for CPOP-R and was 40 months for CHOP-R [HR 95% confidence interval (CI) = 1.02 (0.60, 1.76), P = 0.934]. Fewer CPOP-R patients developed congestive heart failure (CHF) (0% versus 6%, P = 0.120), >= 20% declines in ejection fraction (2% versus 17%, P = 0.004), or elevations in troponin-T (P = 0.003). CPOP-R is an active regimen with modestly lower response rates than CHOP-R but similar PFS and event-free survival. This study demonstrates a substantially lower cardiotoxicity of pixantrone compared with doxorubicin when used as first-line therapy in DLBCL