972 research outputs found

    Integration over the quantum diagonal subgroup and associated Fourier-like algebras

    Full text link
    By analogy with the classical construction due to Forrest, Samei and Spronk we associate to every compact quantum group G\mathbb{G} a completely contractive Banach algebra AΔ(G)A_\Delta(\mathbb{G}), which can be viewed as a deformed Fourier algebra of G\mathbb{G}. To motivate the construction we first analyse in detail the quantum version of the integration over the diagonal subgroup, showing that although the quantum diagonal subgroups in fact never exist, as noted earlier by Kasprzak and So{\l}tan, the corresponding integration represented by a certain idempotent state on C(G)C(\mathbb{G}) makes sense as long as G\mathbb{G} is of Kac type. Finally we analyse as an explicit example the algebras AΔ(ON+)A_\Delta(O_N^+), N≥2N\ge 2, associated to Wang's free orthogonal groups, and show that they are not operator weakly amenable.Comment: Minor updates; Remark 5.7 has been added; 31 page

    Currents in, Forces on and Deformations/Displacements of the LHC Beam Screen Expected during a Magnet Quench

    Get PDF
    Due to the field asymmetry of the LHC dipoles, the magnetic field integral calculated from the centre of the aperture to the outside of the cold mass does not vanish. During a magnet quench this asymmetry generates an electromotive force and thus a current with a resultant lateral force on the beam screen. This induced force was observed indirectly when measuring the deformation of the beam screen cross-section during a quench using a precision displacement transducer, which will be described. The transducer (based on optical gratings) was developed specially to study the beam screen deformation in cryogenic environments and high magnetic fields. The results of the measurements are compared to calculations and to direct measurements of the induced voltage along the current path. An estimation of the forces exerted on the cold bore by the beam screen and of the actual current induced in the beam screen will be given

    Raman spectroscopy of human teeth using integrated optical spectrometers

    Get PDF
    We have designed an arrayed-waveguide grating in silicon oxynitride technology for the detection of Raman signals from tooth enamel in the spectral region between 890 nm and 912 nm. The detected signals for both parallel and cross polarizations are used to distinguish between healthy and carious regions on the tooth surface of extracted human teeth. Our experimental results are in very good agreement with those achieved using conventional Raman spectrometers. Our results represent a step toward the realization of compact, hand-held, integrated spectrometers

    Operational experience with the LHC waveguide mode reflectometer

    Get PDF
    The LHC microwave mode reflectometer (assembly version) reached operational status by the autumn of 2005. It is now routinely used in the LHC tunnel and on the surface to take data on the beam screens of the individual LHC magnets and also groups of magnets with lengths up to 100 meters. The reflectometer operates in the frequency range from about 4 GHz to 10 GHz and employs mode selective launchers. This paper discusses the operational aspects of the system as well as methods for clutter (fake reflection) elimination and procedures for cross-checks in case of a suspected obstacle or other faul

    In vitro - in vivo correlation in dermal delivery: the role of excipients

    Get PDF
    The composition of topical and transdermal formulations is known to determine the rate and the extent of drug delivery to and through the skin. However, to date, the role of excipients in these formulations on skin delivery of actives has received little attention from scientists in the field. Monitoring skin absorption of both drug and vehicle may provide insights into the mechanism by which excipients promote permeation and may facilitate the design of effective and safer products. Previously, we have investigated the use of quantitative Confocal Raman Spectroscopy (CRS) to investigate the delivery of an active to the skin, and we also reported the first fully quantitative study that compared this method with the well-established in vitro permeation test (IVPT) model. To further explore the potential of quantitative CRS in assessing topical delivery, the present work investigated the effects of commonly used excipients on the percutaneous absorption of a model drug, ibuprofen (IBU). Permeation of IBU and selected solvents following finite dose applications to human skin was determined in vitro and in vivo by Franz diffusion studies and quantitative CRS, respectively. The solvents used were propylene glycol (PG), dipropylene glycol (DPG), tripropylene glycol (TPG), and polyethylene glycol 300 (PEG 300). Overall, the cumulative amounts of IBU that permeated at 24 h in vitro were similar for PG, DPG, and TPG (p > 0.05). These three vehicles outperformed PEG 300 (p TPG, while PEG 300 did not permeate the skin. A linear relationship between maximum vehicle and IBU flux in vitro was found, with a correlation coefficient (R2) of 0.95. When comparing in vitro with in vivo data, a positive in vitro–in vivo (IVIV) correlation between the cumulative permeation of IBU in vitro and the total amount of IBU that penetrated the stratum corneum (SC) in vivo was observed, with a Pearson correlation coefficient (R2) of 0.90. A strong IVIV correlation, R2 = 0.82, was found following the linear regression of the cumulative number of solvents permeated in vitro and the corresponding skin uptake in vivo measured with CRS. This is the first study to correlate in vivo permeation of solvents measured by CRS with data obtained by in vitro diffusion studies. The IVIV correlations suggest that CRS is a powerful tool for profiling drug and vehicle delivery from dermal formulations. Future studies will examine additional excipients with varying physicochemical properties. Ultimately, these findings are expected to lead to new approaches for the design, evaluation, and optimization of formulations that target actives to and through the skin

    The LHC Beam Pipe Waveguide Mode Reflectometer

    Get PDF
    The waveguide-mode reflectometer for obstacle detection in the LHC beam pipe has been intensively used for more than 18 months. The âワAssemblyâ version is based on the synthetic pulse method using a modern vector network analyzer. It has mode selective excitation couplers for the first TE and TM mode and uses a specially developed waveguide mode dispersion compensation algorithm with external software. In addition there is a similar âワIn Situâ version of the reflectometer which uses permanently installed microwave couplers at the end of each of the nearly 3 km long LHC arcs. During installation a considerable number of unexpected objects have been found in the beam pipes and subsequently removed. Operational statistics and lessons learned are presented and the overall performance is discussed

    Longitudinal coupled-bunch instability around 1 GHZ at the CERN PS booster

    Get PDF
    The fast-growing "Ring 4" instability occurring at intensities above 6.5 1012 protons in the top one of the four rings of the CERN PS Booster (PSB) is finally explained by an asymmetry in the 40 vacuum pump manifolds common to all rings. Impedance measurements (by wire method) and numerical calculations show a sharp resonant peak (Q~2000) at 1100 MHz and shunt impedances two times higher for the Ring 4 ports as compared to the other rings. This factor is sufficient to explain that the threshold of the instability falls below the maximum intensity only in Ring 4. A final, but labor-intensive and expensive, cure consists of inserting short-circuiting sleeves into all 160 beam ports. Results of beam and impedance measurements and the planned cure will be presented and discusse

    Novel types of anti-ecloud surfaces

    Full text link
    In high power RF devices for space, secondary electron emission appears as the main parameter governing the multipactor effect and as well as the e-cloud in large accelerators. Critical experimental activities included development of coatings with low secondary electron emission yield (SEY) for steel (large accelerators) and aluminium (space applications). Coatings with surface roughness of high aspect ratio producing the so-call secondary emission suppression effect appear as the selected strategy. In this work a detailed study of the SEY of these technological coatings and also the experimental deposition methods (PVD and electrochemical) are presented. The coating-design approach selected for new low SEY coatings include rough metals (Ag, Au, Al), rough alloys (NEG), particulated and magnetized surfaces, and also graphene like coatings. It was found that surface roughness also mitigate the SEY deterioration due to aging processes.Comment: 4 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba, Italy; CERN Yellow Report CERN-2013-002, pp.153-15

    A Holstein-Primakoff and a Dyson realization for the quantum algebra Uq[sl(n+1)]U_q[sl(n+1)]

    Full text link
    The known Holstein-Primakoff and Dyson realizations of the Lie algebra sl(n+1),n=1,2,...sl(n+1), n=1,2,... in terms of Bose operators (Okubo S 1975 J. Math. Phys. 16 528) are generalized to the class of the quantum algebras Uq[sl(n+1)]U_q[sl(n+1)] for any nn. It is shown how the elements of Uq[sl(n+1)]U_q[sl(n+1)] can be expressed via nn pairs of Bose creation and annihilation operators.Comment: 5 pages, Te
    • …
    corecore