426 research outputs found
Perturbation theory of PT-symmetric Hamiltonians
In the framework of perturbation theory the reality of the perturbed
eigenvalues of a class of \PTsymmetric Hamiltonians is proved using stability
techniques. We apply this method to \PTsymmetric unperturbed Hamiltonians
perturbed by \PTsymmetric additional interactions
Canonical Expansion of PT-Symmetric Operators and Perturbation Theory
Let be any \PT symmetric Schr\"odinger operator of the type on , where is
any odd homogeneous polynomial and . It is proved that is
self-adjoint and that its eigenvalues coincide (up to a sign) with the singular
values of , i.e. the eigenvalues of . Moreover we
explicitly construct the canonical expansion of and determine the singular
values of through the Borel summability of their divergent
perturbation theory. The singular values yield estimates of the location of the
eigenvalues \l_j of by Weyl's inequalities.Comment: 20 page
On the eigenproblems of PT-symmetric oscillators
We consider the non-Hermitian Hamiltonian H=
-\frac{d^2}{dx^2}+P(x^2)-(ix)^{2n+1} on the real line, where P(x) is a
polynomial of degree at most n \geq 1 with all nonnegative real coefficients
(possibly P\equiv 0). It is proved that the eigenvalues \lambda must be in the
sector | arg \lambda | \leq \frac{\pi}{2n+3}. Also for the case
H=-\frac{d^2}{dx^2}-(ix)^3, we establish a zero-free region of the
eigenfunction u and its derivative u^\prime and we find some other interesting
properties of eigenfunctions.Comment: 21pages, 9 figure
symmetric non-selfadjoint operators, diagonalizable and non-diagonalizable, with real discrete spectrum
Consider in , , the operator family . \ds
H_0= a^\ast_1a_1+... +a^\ast_da_d+d/2 is the quantum harmonic oscillator with
rational frequencies, a symmetric bounded potential, and a real
coupling constant. We show that if , being an explicitly
determined constant, the spectrum of is real and discrete. Moreover we
show that the operator \ds H(g)=a^\ast_1 a_1+a^\ast_2a_2+ig a^\ast_2a_1 has
real discrete spectrum but is not diagonalizable.Comment: 20 page
Maximal couplings in PT-symmetric chain-models with the real spectrum of energies
The domain of all the coupling strengths compatible with the
reality of the energies is studied for a family of non-Hermitian by
matrix Hamiltonians with tridiagonal and symmetric
structure. At all dimensions , the coordinates are found of the extremal
points at which the boundary hypersurface touches the
circumscribed sphere (for odd ) or ellipsoid (for even ).Comment: 18 pp., 2 fig
-self-adjoint operators with -symmetries: extension theory approach
A well known tool in conventional (von Neumann) quantum mechanics is the
self-adjoint extension technique for symmetric operators. It is used, e.g., for
the construction of Dirac-Hermitian Hamiltonians with point-interaction
potentials. Here we reshape this technique to allow for the construction of
pseudo-Hermitian (-self-adjoint) Hamiltonians with complex
point-interactions. We demonstrate that the resulting Hamiltonians are
bijectively related with so called hypermaximal neutral subspaces of the defect
Krein space of the symmetric operator. This symmetric operator is allowed to
have arbitrary but equal deficiency indices . General properties of the
$\cC$ operators for these Hamiltonians are derived. A detailed study of
$\cC$-operator parametrizations and Krein type resolvent formulas is provided
for $J$-self-adjoint extensions of symmetric operators with deficiency indices
. The technique is exemplified on 1D pseudo-Hermitian Schr\"odinger and
Dirac Hamiltonians with complex point-interaction potentials
The Pauli equation with complex boundary conditions
We consider one-dimensional Pauli Hamiltonians in a bounded interval with
possibly non-self-adjoint Robin-type boundary conditions. We study the
influence of the spin-magnetic interaction on the interplay between the type of
boundary conditions and the spectrum. A special attention is paid to
PT-symmetric boundary conditions with the physical choice of the time-reversal
operator T.Comment: 16 pages, 4 figure
Generating Converging Bounds to the (Complex) Discrete States of the Hamiltonian
The Eigenvalue Moment Method (EMM), Handy (2001), Handy and Wang (2001)) is
applied to the Hamiltonian, enabling
the algebraic/numerical generation of converging bounds to the complex energies
of the states, as argued (through asymptotic methods) by Delabaere and
Trinh (J. Phys. A: Math. Gen. {\bf 33} 8771 (2000)).Comment: Submitted to J. Phys.
Eigenvalues of PT-symmetric oscillators with polynomial potentials
We study the eigenvalue problem
with the boundary
conditions that decays to zero as tends to infinity along the rays
, where is a polynomial and integers . We provide an
asymptotic expansion of the eigenvalues as , and prove
that for each {\it real} polynomial , the eigenvalues are all real and
positive, with only finitely many exceptions.Comment: 23 pages, 1 figure. v2: equation (14) as well as a few subsequent
equations has been changed. v3: typos correcte
A spin chain model with non-Hermitian interaction: the Ising quantum spin chain in an imaginary field
We investigate a lattice version of the Yang-Lee model which is characterized by a non-Hermitian quantum spin chain Hamiltonian. We propose a new way to implement PT-symmetry on the lattice, which serves to guarantee the reality of the spectrum in certain regions of values of the coupling constants. In that region of unbroken PT-symmetry we construct a Dyson map, a metric operator and find the Hermitian counterpart of the Hamiltonian for small values of the number of sites, both exactly and perturbatively. Besides the standard perturbation theory about the Hermitian part of the Hamiltonian, we also carry out an expansion in the second coupling constant of the model. Our constructions turns out to be unique with the sole assumption that the Dyson map is Hermitian. Finally we compute the magnetization of the chain in the z and x direction
- …
