14,793 research outputs found
A class of quantum many-body states that can be efficiently simulated
We introduce the multi-scale entanglement renormalization ansatz (MERA), an
efficient representation of certain quantum many-body states on a D-dimensional
lattice. Equivalent to a quantum circuit with logarithmic depth and distinctive
causal structure, the MERA allows for an exact evaluation of local expectation
values. It is also the structure underlying entanglement renormalization, a
coarse-graining scheme for quantum systems on a lattice that is focused on
preserving entanglement.Comment: 4 pages, 5 figure
The role of initial conditions in the ageing of the long-range spherical model
The kinetics of the long-range spherical model evolving from various initial
states is studied. In particular, the large-time auto-correlation and -response
functions are obtained, for classes of long-range correlated initial states,
and for magnetized initial states. The ageing exponents can depend on certain
qualitative features of initial states. We explicitly find the conditions for
the system to cross over from ageing classes that depend on initial conditions
to those that do not.Comment: 15 pages; corrected some typo
Critical behavior of vector models with cubic symmetry
We report on some results concerning the effects of cubic anisotropy and
quenched uncorrelated impurities on multicomponent spin models. The analysis of
the six-loop three-dimensional series provides an accurate description of the
renormalization-group flow.Comment: 6 pages. Talk given at the V International Conference Renormalization
Group 2002, Strba, Slovakia, March 10-16 200
Dynamic crossover in the global persistence at criticality
We investigate the global persistence properties of critical systems relaxing
from an initial state with non-vanishing value of the order parameter (e.g.,
the magnetization in the Ising model). The persistence probability of the
global order parameter displays two consecutive regimes in which it decays
algebraically in time with two distinct universal exponents. The associated
crossover is controlled by the initial value m_0 of the order parameter and the
typical time at which it occurs diverges as m_0 vanishes. Monte-Carlo
simulations of the two-dimensional Ising model with Glauber dynamics display
clearly this crossover. The measured exponent of the ultimate algebraic decay
is in rather good agreement with our theoretical predictions for the Ising
universality class.Comment: 5 pages, 2 figure
Entanglement entropy and D1-D5 geometries
http://dx.doi.org/10.1103/PhysRevD.90.066004Giusto, Stefano, and Rodolfo Russo. "Entanglement Entropy and D1-D5 geometries." Physical Review D 90.6 (2014): 066004
Entanglement properties of quantum spin chains
We investigate the entanglement properties of a finite size 1+1 dimensional
Ising spin chain, and show how these properties scale and can be utilized to
reconstruct the ground state wave function. Even at the critical point, few
terms in a Schmidt decomposition contribute to the exact ground state, and to
physical properties such as the entropy. Nevertheless the entanglement here is
prominent due to the lower-lying states in the Schmidt decomposition.Comment: 5 pages, 6 figure
Entropy in quantum chromodynamics
We review the role of zero-temperature entropy in several closely-related
contexts in QCD. The first is entropy associated with disordered condensates,
including . The second is vacuum entropy arising from QCD
solitons such as center vortices, yielding confinement and chiral symmetry
breaking. The third is entanglement entropy, which is entropy associated with a
pure state, such as the QCD vacuum, when the state is partially unobserved and
unknown. Typically, entanglement entropy of an unobserved three-volume scales
not with the volume but with the area of its bounding surface. The fourth
manifestation of entropy in QCD is the configurational entropy of
light-particle world-lines and flux tubes; we argue that this entropy is
critical for understanding how confinement produces chiral symmetry breakdown,
as manifested by a dynamically-massive quark, a massless pion, and a condensate.Comment: 22 pages, 2 figures. Preprint version of invited review for Modern
Physics Letters
Entanglement of quantum spin systems: a valence-bond approach
In order to quantify entanglement between two parts of a quantum system, one
of the most used estimator is the Von Neumann entropy. Unfortunately, computing
this quantity for large interacting quantum spin systems remains an open issue.
Faced with this difficulty, other estimators have been proposed to measure
entanglement efficiently, mostly by using simulations in the valence-bond
basis. We review the different proposals and try to clarify the connections
between their geometric definitions and proper observables. We illustrate this
analysis with new results of entanglement properties of spin 1 chains.Comment: Proceedings of StatPhys 24 satellite conference in Hanoi; submitted
for a special issue of Modern Physics Letters
Entanglement of excited states in critical spin chians
Renyi and von Neumann entropies quantifying the amount of entanglement in
ground states of critical spin chains are known to satisfy a universal law
which is given by the Conformal Field Theory (CFT) describing their scaling
regime. This law can be generalized to excitations described by primary fields
in CFT, as was done in reference (Alcaraz et. al., Phys. Rev. Lett. 106, 201601
(2011)), of which this work is a completion. An alternative derivation is
presented, together with numerical verifications of our results in different
models belonging to the c=1,1/2 universality classes. Oscillations of the Renyi
entropy in excited states and descendant fields are also discussed.Comment: 23 pages, 13 figure
Observations Outside the Light-Cone: Algorithms for Non-Equilibrium and Thermal States
We apply algorithms based on Lieb-Robinson bounds to simulate time-dependent
and thermal quantities in quantum systems. For time-dependent systems, we
modify a previous mapping to quantum circuits to significantly reduce the
computer resources required. This modification is based on a principle of
"observing" the system outside the light-cone. We apply this method to study
spin relaxation in systems started out of equilibrium with initial conditions
that give rise to very rapid entanglement growth. We also show that it is
possible to approximate time evolution under a local Hamiltonian by a quantum
circuit whose light-cone naturally matches the Lieb-Robinson velocity.
Asymptotically, these modified methods allow a doubling of the system size that
one can obtain compared to direct simulation. We then consider a different
problem of thermal properties of disordered spin chains and use quantum belief
propagation to average over different configurations. We test this algorithm on
one dimensional systems with mixed ferromagnetic and anti-ferromagnetic bonds,
where we can compare to quantum Monte Carlo, and then we apply it to the study
of disordered, frustrated spin systems.Comment: 19 pages, 12 figure
- …
