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In conformal field theories (CFTs) with a gravitational anti–de Sitter (AdS) dual it is possible to calculate
the entanglement entropy of a region A holographically by using the Ryu-Takayanagi formula. In this work
we consider systems that are in a pure state that is not the vacuum. We study in particular the
two-dimensional conformal field theory dual to type IIB string theory on AdS3 × S3 × T4 and focus on the
1=4-BPS states described holographically by the two-charge microstate geometries. We discuss a general
prescription for the calculation of the entanglement entropy in these geometries that are asymptotically
AdS3 × S3. In particular we study analytically the perturbative expansion for a single, short interval: we
show that the first nontrivial terms in this expansion are consistent with the expected CFT structure and
with previous results on the vacuum expectation values of chiral primary operators for the 1=4-BPS
configurations.
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I. INTRODUCTION

Entanglement entropies in quantum field theory have
been at the center of intense study in the last few years, in
particular in the case of conformal field theories (CFTs)
that admit a dual gravitational description. In 1þ 1DCFTs,
which will be the focus of this work, Rényi and von
Neumann’s entanglement entropies (EEs) can be calculated
in terms of correlators among local operators by using the
replica trick [1]. On the gravitational side, von Neumann’s
EE can be computed via the Ryu-Takayanagi (RT) formula
[2] and the generalization to Rényi’s case was discussed in
[3–5]. A general argument explaining the RT formula has
been recently given in [6]. Most of the past work focused
on density matrices ρA obtained starting either from the
SLð2;CÞ invariant ground state [(dual to anti–de Sitter
(AdS)] or from the thermal state (dual to the Banados-
Teitelboim-Zanelli (BTZ) black hole [7]) and tracing the
degrees of freedom outside the space region A. When A is
an interval, the EE is given directly in terms of the central
charge c and does not depend on other details of the CFT.
Things are more complicated if the space region A is made
of several disconnected intervals [8,9] and already the case
of two disjoint intervals [10,11] provides a good testing
ground to study nonuniversal quantities.
In this work we focus on a different setup which also

yields theory specific results: we study the EE for a density
matrix obtained from a pure state jsi that is not the

SLð2;CÞ invariant vacuum. On the holographic side, it
was first suggested in [7] that the analysis of the EE in
microstate geometries that are asymptotically AdS3 repre-
sents a first step to understand microscopically the result
for the extremal BTZ black hole. From the CFT point of
view a similar problem has been recently analyzed in [12]
and [13–15]. While the latter references focus on a time-
dependent situation, we will focus, as in [12], on a density
matrix obtained from an eigenstate jsi of the CFT
Hamiltonian. This reference assumes that jsi is a small
perturbation of the vacuum state. Since we aim to provide
also a gravitational description of our analysis we focus
on a 1þ 1D CFT that has a well-known string dual. The
states we will be considering induce a macroscopic back-
reaction on the dual geometry and thus we need to consider
the EE in a background that is not just AdS3 plus a small
perturbation. We argue that this requires a generalization
of the standard RT formula and check explicitly in
some cases that the holographic results match the CFT
expectations.
In particular we will focus on the superconformal field

theory with (4,4) supercharges and central charge
c ¼ 6n1n5, whose dual gravitational description is given
in terms of type IIB string theory compactified on S1 × T4

with n1 D1-branes and n5 D5-branes wrapped on the
compact space (the radius R of the S1 is much bigger than
the string sized T4 and all the branes wrap this circle). The
gravitational description is appropriate for large charges
n1; n5 ≫ 1 and for particular values of the moduli of the
CFT. However it is convenient also to keep in mind a free
field representation of the CFT with four bosonic and four
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fermionic fields whose target space is ðT4Þn1n5=Sn1n5 . This
particular AdS/CFT duality has been thoroughly studied
also because of its application to black hole physics in five
dimensions: the Strominger-Vafa black hole [16] counts
1=8-BPS states in this CFTand, in general, this setup can be
used to address questions about the gravitational nature of
each pure semiclassical state, a topic which is at the center
of the so-called fuzzball program1 [23].
Our main goal is to study the EE for a single interval in

the BPS states preserving 1=4 of the 32 supercharges of the
type IIB theory. From the CFT point of view this means that
we consider only the ground states in the Ramond-Ramond
sector (i.e. the sector where the fermions have periodic
boundary conditions). Of course these are eigenstates of
the CFT Hamiltonian, with zero energy, so we are dealing
with a stationary (but nonstatic) configuration. In particular
we will focus on semiclassical states, which are dual to
smooth geometries on the bulk side of the AdS/CFT
correspondence. The general form of these solutions is
known [24–26] and we use it to compute holographically
the EE of an interval. While the calculation can be set up in
general, in order to give explicit results we focus on the
limit where the size of the interval is small with respect to
the S1 where the CFT is defined (which coincides with the
large S1 in the string compactification). This limit allows
for analytic calculations both on the gravity and the CFT
sides, and, in the case of two intervals in the ground states,
it was studied in [3,10,11]. The first subleading term in this
expansion is sufficient to show that there exists a state
specific contribution beyond the leading universal result.
The outline of this paper is as follows. In Sec. II we first

describe the general prescription for calculating the EE
in a stationary geometry that is asymptotically AdS ×M,
where M is a compact space. As the geometries we
consider are generically nonstatic, our prescription general-
izes the covariant Hubeny-Rangamani-Takayanagi (HRT)
[27] formalism for the holographic computation of the EE.
Then we focus on the 1=4 BPS geometries of [24–26],
which correspond to the Ramond-Ramond ground states of
the dual CFT. The result for the EE of a single interval is
given in terms of an integral which includes the compact
space. In Sec. III we discuss in detail the short interval limit
up to the first nonuniversal terms. In Sec. IV we reinterpret
the gravity result in terms of the underlying CFT. The
quantity under analysis is nonprotected and so it is not
possible to use directly the free orbifold description.
However, the short interval expansion can be written in
a general way as a sum of terms related to the different
operators of the CFT. Operators with a large conformal
dimension give a negligible contribution to the EE in this
limit and so we can limit ourselves to a finite number of

operators with a small dimension. In the strong coupling
limit, where the gravity approximation is valid, only the
BPS operators have a finite dimension. In this section, we
indeed show that the gravity result discussed previously
matches the general CFT expression for the short interval
expansion where only the contribution of the BPS operator
is included. Further comments explaining why it is possible
to make this comparison at a precise, quantitative level
can be found after Eq. (4.9). To the best of our knowledge,
this result represents the first nontrivial check of the RT
formula (or more precisely of its six-dimensional exten-
sion) in a situation where the EE has also nonuniversal
contributions.

II. HOLOGRAPHIC ENTANGLEMENT ENTROPY

In theories that admit a holographic dual, the EE can be
computed via the RT formula [2]. In its simplest form, the
formula applies to theories whose gravity dual is classical
Einstein gravity2 (eventually plus matter) and to states dual
to static classical spacetimes that tend asymptotically to
AdSdþ1. For d ¼ 2, the EE of a one-dimensional spatial
region A is given by

SA ¼ areaðγAÞ
4GN

; ð2:1Þ

where γA is the curve of minimal length homologous to A,
in the space slice of the bulk containing A, and GN is the
Newton’s constant of the three-dimensional theory.
We aim to apply the RT formalism to compute entangle-

ment entropies in states of the D1-D5 black hole. These
states can be identified with the Ramond-Ramond (RR)
ground states of a two-dimensional CFT that we will denote
as the D1-D5 CFT (for a review see [31]). The gravitational
duals of these states are described semiclassically by ten-
dimensional supergravity solutions that, in the decoupling
limit, are asymptotically AdS3 × S3 × T4. As the T4 is taken
to have string size, the geometries are smeared on the T4 and
can be equivalently described by six-dimensional solutions,
with Einstein metric ds26. Generic microstates depend
however nontrivially on the S3 directions, and there is no
canonical way to reduce them to three-dimensional asymp-
totically AdS3 solutions. We thus need a generalization of
the RT formula (2.1) that applies to six-dimensional space-
times asymptotic to AdS3 × S3. Given a one-dimensional
spatial region A, we propose that its EE in a D1-D5
microstate is given by

SA ¼ areaðΓAÞ
4G0

N
; ð2:2Þ

where ΓA is the four-dimensional minimal-area surface of
the six-dimensional geometry at constant time that at the

1Recent reviews on the subject are [17–19], and a discussion of
some general implications of this approach for the physics of
black holes can be found in [20–22].

2The generalization to holographic theories with higher cur-
vature corrections has been worked out in [28,29]; see also [30].
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AdS3 boundary reduces to ∂A × S3 and in the bulk has the
product structure defined below; G0

N is the six-dimensional
Newton’s constant. In order to provide a precise definition
of the class of four-dimensional manifolds to which ΓA
belongs, one needs to give meaning to the split of the six-
dimensional space into an AdS3 and an S3 part or in other
words to introduce an almost product structure. While this
split can be unambiguously defined at the boundary of the
space, where the geometry reduces to AdS3 × S3, there are
various inequivalent ways to extend it in the interior of
the bulk. An almost product structure can be defined by
choosing a system of coordinates xI ¼ ðxμ; xαÞ (with
I ¼ 1;…6, μ ¼ 1;…; 3, α ¼ 1;…; 3), where, at the
boundary, xμ and xα are coordinates in AdS3 and S3.
These coordinates are extended in the bulk in such a
way that the six-dimensional Einstein metric GIJ satisfies
the de Donder-Lorentz gauge3

∇αĜαβ ¼ ∇αGαμ ¼ 0; ð2:3Þ

where covariant derivatives are defined with respect to the
round S3 metric and Ĝαβ is the traceless part of Gαβ. Using
these coordinates, the six-dimensional Einstein metric can
be written in the form

ds26 ¼ GIJdxIdxJ

¼ gμνdxμdxν þ Gαβðdxα þ Aα
μdxμÞðdxβ þ Aβ

νdxνÞ;
ð2:4Þ

which defines the split of the six-dimensional metric into
deformed AdS3 and S3 parts indicated as gμν and Gαβ

respectively. As usual in Kaluza-Klein (KK) reductions,
this split is invariant under reparametrizations of the
compact space (xα → xαðxμ; xβÞ), but is not invariant
under xα-dependent changes of the coordinates xμ

(xμ → xμðxν; xαÞ); it is precisely this arbitrariness that is
fixed by the gauge condition (2.3). So the prescription we
propose is to minimize the functional (2.2) over the class of
4-manifolds that is invariant under the almost product
structure induced by the coordinate split (2.4). These
manifolds can be parametrized as xIðλ; xαÞ ¼ ðxμðλÞ; xαÞ,
where x0ðλÞ ¼ const. when ΓA lies in a constant time slice.
The metric induced on the 4-manifold ΓA is

ds2� ¼ gμν _xμ _xνdλ2 þ Gαβðdxα þ Aα
μ _xμdλÞðdxβ þ Aβ

ν _xνdλÞ;
ð2:5Þ

its determinant is

detðg�Þ ¼ gμν _xμ _xν detðGαβÞ; ð2:6Þ

and the area of the 4-manifold is

areaðΓAÞ ¼
Z

dλd3xα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðGαβÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _xμ _xν

q

≡
Z

dλd3xα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gEμν _xμ _xν

q
; ð2:7Þ

where we have defined

gEμν ¼ gμν detðGαβÞ: ð2:8Þ

For generic microstates gEμν depends nontrivially on the S3

coordinates xα. When instead gEμν in (2.8) is independent of
xα, it is just the Einstein metric of the three-dimensional
theory reduced on S3, and the prescription (2.2) reduces to
the RT formula (2.1) for the asymptotically AdS3 metric gEμν.
Generic microstates are, moreover, associated with sta-

tionary but nonstatic geometries. It was shown in [27] that
for nonstatic geometries the RT prescription has to be
generalized by relaxing the constraint that the class of
manifolds over which one minimizes the area functional
lies in a constant time slice. In this more general setting,
minimal surfaces might no longer exist, and one should
look instead for extremal surfaces. We will denote this
covariant generalization of the RT prescription as the HRT
prescription. The HRT formalism can be generalized to
spacetimes asymptotic to AdS3 × S3 along the same lines
outlined above: the covariant six-dimensional prescription
is to find the extrema of the area functional (2.7) over
manifolds ΓA that are invariant under the almost product
structure previously defined, without imposing any
restriction on x0ðλÞ in the bulk.

A. Solution of the geodesic problem for a single interval

Let us now work out the equations satisfied by extremal
surfaces in a general nonstatic geometry. For the purpose of
extremizing the area functional (2.7) with respect to the
functions xμðλÞ, the S3 coordinates xα play the role of
external parameters, and explicit dependence on xα will be
suppressed in the following: it is understood that everything
is computed at some fixed value of xα, over which one
integrates at the end. As usual, it is convenient to para-
metrize xμðλÞ in terms of the “proper time” parameter τ,
satisfying

gEμν _xμ _xν ¼ 1: ð2:9Þ

In this parametrization, extrema of the area functional
satisfy

3The de Donder-Lorentz gauge is the one commonly employed
when reducing on compact spaces [32], and it seems natural
in the AdS/CFT context, because it was shown in [33] that
it reproduces the results of a gauge-invariant KK reduction
procedure.
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d
dτ

ðgEμν _xμÞ ¼
1

2
∂νgEμλ _x

μ _xλ: ð2:10Þ

Two-charge microstate geometries do not depend on the
angular coordinate of AdS3, which is identified with the
spatial coordinate of the CFT and will be denoted by y, but
only on the AdS3 radial coordinate r (apart from xα).
Moreover we will assume for simplicity the gauge
gErt ¼ gEry ¼ 0; as we will see it is straightforward to satisfy
this condition at the leading order in the large r expansion.
The relevant metric components are then gErrðrÞ and
gEmnðrÞ where we denote by m; n indices that take values
t; y. The components ν ¼ n ¼ t; y of the extremality
equations (2.10) give

d
dτ

ðgEmnðrÞ_xmÞ ¼ 0 ⇒ _xm ¼ gmn
E ðrÞκn; ð2:11Þ

where gmn
E is the inverse of gEmn and κn are constants (that

might depend on xα). The constraint (2.9) implies

gErrðrÞ_r2 þ gEmnðrÞ_xm _xn ¼ 1

⇒ _r2 ¼ 1 − gmn
E ðrÞκmκn
gErrðrÞ

: ð2:12Þ

Equations (2.11), (2.12) determine xμðτÞ after specifying
the boundary conditions which depend on the choice of the
spatial region A. We will restrict to spatial regions made of
a single interval of length l at t ¼ t̄. The end points of the
curve xμðτÞ at the boundary of AdS3 (r → ∞) have to
coincide with the boundaries of the interval A. Since the
area of a 4-manifold that extends all the way to r ¼ ∞
diverges, to obtain a finite result it is necessary to introduce
an IR cutoff r0 and replace the AdS3 boundary with the
surface r ¼ r0. This explains the choice of the following
boundary conditions:

rðτ1Þ ¼ r0; tðτ1Þ ¼ t̄; yðτ1Þ ¼ 0;

rðτ2Þ ¼ r0; tðτ2Þ ¼ t̄; yðτ2Þ ¼ l: ð2:13Þ

Then

0 ¼
Z

τ2

τ1

_tdτ

¼ 2

Z
r0

r�

_t
_r
dr

¼ 2κm

Z
r0

r�
drgtmE ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gErrðrÞ

1 − gnpE ðrÞκnκp

s
; ð2:14Þ

l ¼
Z

τ2

τ1

_ydτ

¼ 2

Z
r0

r�

_y
_r
dr

¼ 2κm

Z
r0

r�
drgymE ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gErrðrÞ

1 − gnpE ðrÞκnκp

s
; ð2:15Þ

where the turning point r� is the largest solution of

gmn
E ðr�Þκmκn ¼ 1: ð2:16Þ

Inverting Eqs. (2.14)–(2.15) determines the parameters κm
in terms of the interval length l. These values of κm can then
be replaced in the expression for the area of the minimal
submanifold ΓA

areaðΓAÞ ¼
Z

d3xα
Z

τ2

τ1

dτ

¼ 2

Z
d3xα

Z
r0

r�

1

_r
dr

¼ 2

Z
d3xα

Z
r0

r�
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gErrðrÞ

1 − gmn
E ðrÞκmκn

s
: ð2:17Þ

According to (2.2), the EE of the interval A is then

SA ¼ areaðΓAÞ
4G0

N
¼ c

6

areaðΓAÞ
volðS3bÞRAdS

¼ n1n5
areaðΓAÞ

volðS3bÞRAdS
;

ð2:18Þ

where volðS3bÞ is the volume of the three-dimensional
sphere at the boundary of AdS. We also used

G0
N ¼ volðS3bÞGN; c ¼ 3

2

RAdS

GN
¼ 6n1n5; ð2:19Þ

with n1, n5 being the numbers of D1 and D5 branes and
RAdS the radius of AdS.

III. ENTANGLEMENT ENTROPY IN D1-D5
STATES FOR SMALL l

The geometry of semiclassical D1-D5 states has been
constructed in [26], whose conventions we will follow
here. We will restrict for simplicity to the class of states that
are invariant under rotations in the internal T4 directions
(for which Aα− ¼ 0, in the notation of [26]). The six-
dimensional Einstein metric of these states is

ds26 ¼ f−1½−ðdt − AÞ2 þ ðdy − BÞ2� þ fdxidxi; ð3:1Þ

where

f ≡ ðf1f5 −A2Þ1=2; ð3:2Þ
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xi (i ¼ 1;…; 4) are coordinates in R4, and A≡ Aidxi,
B≡ Bidxi are 1-forms on R4 that satisfy dB ¼ − �4 dA.
f1, f5, A, Ai are harmonic functions on R4 whose explicit
expressions are, for instance, given in Eqs. (2.12) and (2.5)
of [26].
The simplest microstates are the ones with maximal or

minimal values of the SUð2ÞL × SUð2ÞR R-charges:
j ¼ �n1n5=2, j̄ ¼ �n1n5=2. For example the geometry
of the state with j ¼ j̄ ¼ n1n5=2 is, in the decoupling limit,

ds26 ¼ −
r̂2 þ a2ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p dt2 þ r̂2ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p dy2 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p dr̂2

r̂2 þ a2

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
ðdθ̂2 þ cos2θ̂dψ̂2 þ sin2θ̂dϕ̂2Þ; ð3:3Þ

with

ψ̂ ¼ ψ −
y
R
; ϕ̂ ¼ ϕ −

t
R
: ð3:4Þ

The parameter a is related to the D1 and D5 charges, Q1

and Q5, and the radius R of the S1 direction y, by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
R

: ð3:5Þ

The coordinates ðr̂; θ̂Þ are mapped to polar coordinates of
R4 ðr; θÞ by

r2 ¼ r̂2 þ a2sin2θ̂; cos2θ ¼ r̂2cos2θ̂

r̂2 þ a2sin2θ̂
: ð3:6Þ

It is immediate to check from (3.3) that these coordinates
satisfy the de Donder-Lorentz gauge (2.3). Hence, in
r̂; θ̂; ψ̂ ; ϕ̂ coordinates, it becomes explicit that the six-
dimensional geometry of this particular microstate is
simply AdS3 × S3, and the three-dimensional geometry
gEμν reduced on S3 is just global AdS3. According to the
recipe (2.2), the EE of the interval A ¼ ½0; l� computed in
this state is the same as the one in the SLð2;CÞ-invariant
vacuum:

SA ¼ 2n1n5 log

�
2r0
a

sin

�
l
2R

��
: ð3:7Þ

The metrics for generic microstates are too complicated
to analytically carry out the holographic EE computation
exactly. A limit which is amenable to analytic computa-
tions, both on the gravity and on the CFT side, is the short
interval regime, in which l is much smaller than the S1

radius R. In this limit the extremal submanifold ΓA only
probes the region of the geometry close to the boundary:
hence only the large r expansion of the geometry (3.1) is
relevant in this approximation. We will consider just the
first nontrivial correction in the l expansion, and for this
purpose one can approximate the metric coefficients as

f1 ≈
Q1

r2

�
1þ f11i

r
Yi
1 þ

f12I
r2

YI
2

�
;

f5 ≈
Q5

r2

�
1þ f51i

r
Yi
1 þ

f52I
r2

YI
2

�
;

A ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
A1i

r3
Yi
1;

A ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
r2

ðaαþYαþ
1 þ aα−Yα−

1 Þ;

B ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
r2

ðaαþYαþ
1 − aα−Yα−

1 Þ: ð3:8Þ

Here f1kI , f
5
kI , A1i, aα� are constants that can be computed

once a specific two-charge microstate geometry is chosen.
In the small l expansion we are considering, we will only
keep terms up to second order in f1;51i , A1i, and aα� and
up to first order in f1;52I . It is always possible to pick
coordinates in such a way that

f11i þ f51i ¼ 0; ð3:9Þ

and we will take advantage of this gauge choice in the
following. YI

k are scalar spherical harmonics of degree k on
S3. Wewill need in particular the harmonics of degree 1: the
scalar Yi

1, with i ¼ 1;…; 4, and the vector harmonics Yα�
1 ,

with α ¼ 1; 2; 3, are

Yi
1 ¼ 2

xi

r
; Yαþ

1 ¼ ηαijdx
ixj

r2
; Yα−

1 ¼ η̄αijdx
ixj

r2
; ð3:10Þ

where ηαij¼δαiδ4j−δαjδ4iþεαij4, η̄αij¼δαiδ4j−δαjδ4i−εαij4
are the standard ’t Hooft symbols. One can use either Yαþ

1

or Yα−
1 to form a basis of 1-forms on S3, and moreover the

round S3 metric can be written as ds23 ¼
P

αY
αþ
1 ⊗ Yαþ

1 ¼P
αY

α−
1 ⊗ Yα−

1 . In order to rewrite the metric in the form
(2.4), suitable to perform the reduction on S3, it is
convenient to express the 1-forms in one of the two bases,
let us say Yαþ

1 . Hence we write

Yα−
1 ¼ Rα

βY
βþ
1 ; ð3:11Þ

where the coefficients Rα
β depend on the S

3 coordinates, and

A ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
r2

ðaαþ þ ~aα−ÞYαþ
1 ;

B ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
r2

ðaαþ − ~aα−ÞYαþ
1 ; ð3:12Þ

with

~aα− ¼ Rβ
αaβ−: ð3:13Þ
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The scalar and vector spherical harmonics in (3.10)
satisfy

ðYαþ
1 ÞγðYβþ

1 Þγ ¼ δαβ; ðYα−
1 ÞγðYβ−

1 Þγ ¼ δαβ;

1

2π2

Z
S3
dΩ3Yi

1Y
j
1 ¼ δij;

Z
S3
dΩ3YI

k ¼ 0;Z
S3
dΩ3ðYαþ

1 ÞγðYβ−
1 Þγ ¼ 0; ð3:14Þ

where the contraction over the S3 indices γ and the volume
form dΩ3 are the ones associated with the round S3 metric.
This implies

Rα
γR

β
γ ¼ δαβ;

Z
S3
Rα
β ¼ 0: ð3:15Þ

The system of coordinates used in Eqs. (3.8) does not
satisfy the de Donder-Lorentz gauge conditions (2.3) at
the required order in the perturbative expansion. Before
extracting the three-dimensional metrics gμν and Gαβ from
(2.4), one should thus change to coordinates satisfying
the gauge (2.3). We have checked that, at our perturbative
order, this procedure generates corrections to the gEμν
computed in the coordinates of (3.8) that are linear in
the scalar harmonics of degree 2; hence these corrections
vanish when integrated over S3, thanks to the properties
of spherical harmonics (3.14). For simplicity of exposition,
we will thus continue working with the coordinates
of (3.8).
At the required order in 1=r, the generic two-charge

metric (3.1) can be recast in the form

ds26 ≈ f−1
�
−
�
1þ ðaαþ þ ~aα−Þ2

r2

�
dt2

þ
�
1−

ðaαþ − ~aα−Þ2
r2

�
dy2 − 2

ðaαþÞ2 − ðaα−Þ2
r2

dtdy

�

þ fðdr2 þ r2Ŷαþ
1 Ŷαþ

1 Þ− 2

ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
r2

aαþ ~aβ−Ŷαþ
1 Ŷβþ

1 ;

ð3:16Þ

with

Ŷαþ
1 ¼ Yαþ

1 þ aαþ þ ~aα−ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p dt −
aαþ − ~aα−ffiffiffiffiffiffiffiffiffiffiffiffi

Q1Q5

p dy; ð3:17Þ

and

f ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
r2

�
1 −

f11if
1
1j þA1iA1j

2r2
Yi
1Y

j
1 þ

f12I þ f52I
2r2

YI
2

�
:

ð3:18Þ

The determinant of the S3 metric Gαβ at order 1=r2 can be
read off from (3.16)

detðGαβÞ ≈ ðfr2Þ3 detGS3

�
1 − 2

aαþaβ−
r2

ðYαþ
1 ÞγðYβ−

1 Þγ
�
;

ð3:19Þ

where detGS3 is the determinant of the metric for a round
3-sphere of unit radius. In the same approximation the
AdS3 metric defined in (2.8) is

ds2E ≈ ðfr2Þ3sin2θcos2θ
�
1 − 2

aαþaβ−
r2

ðYαþ
1 ÞγðYβ−

1 Þγ
�

×

�
f−1

�
−
�
1þ ðaαþ þ ~aα−Þ2

r2

�
dt2 þ

�
1 −

ðaαþ − ~aα−Þ2
r2

�
dy2 − 2

ðaαþÞ2 − ðaα−Þ2
r2

dtdy

�
þ fdr2

�

≡ ðQ1Q5Þ3=2sin2θcos2θ
�

r2ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p ½−ð1þ δgEttÞdt2 þ ð1þ δgEyyÞdy2 þ 2δgEtydtdy� þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
r2

ð1þ δgErrÞdr2
�
: ð3:20Þ

The metric ds2E in general depends on the S3 coordinates,
but for the purpose of computing the area functional
areaðΓAÞ one can introduce a “reduced” AdS3 metric
dŝ2E, integrated over S3, such that

areaðΓAÞ
4G0

N
¼

R
dλd3xα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gEμν _xμ _xν

q
4G0

N
¼

R
dλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĝEμν _xμ _xν

q
4GN

:

ð3:21Þ

This reduced metric is given by

dŝ2E ¼ r2ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p ½−ð1þ δĝEttÞdt2 þ ð1þ δĝEyyÞdy2

þ 2δĝEtydtdy� þ
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
r2

ð1þ δĝErrÞdr2; ð3:22Þ

where

δĝEμν ¼
1

2π2

Z
S3
dΩ3δgEμν: ð3:23Þ

Comparing with (3.20), and using (3.14) one finds (3.24)
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δĝEtt ¼
a2þ þ a2− − f21 −A2

1

r2
;

δĝEyy ¼ −
a2þ þ a2− þ f21 þA2

1

r2
; ð3:24aÞ

δĝEty ¼ −
a2þ − a2−

r2
; δĝErr ¼ −2

f21 þA2
1

r2
; ð3:24bÞ

where we introduced the condensed notation

a2� ≡ aα�aα�; f21 ≡ f11if
1
1i; A2

1 ≡A1iA1i: ð3:25Þ

Let us now apply the formalism of Sec. II A and
determine the extremal curves for the reduced metric
ĝEμν. Note that ĝEty is nontrivial and thus we should use
the covariant prescription, without restricting to constant
x0ðλÞ. The EE, however, is invariant under changes of the
orientation of the space (y → −y) and hence it will depend
at least quadratically on ĝEty.

4 As in our case ĝEty is already
quadratic in aα�, its contributions to the EE will be quartic
in aα�, and will be discarded at our perturbative order. We
can thus simplify the computation and take x0ðλÞ ¼ const
and κt ¼ 0. Then Eq. (2.15) reads (at our level of
approximation)

l≈2κyðQ1Q5Þ3=4
Z

∞

κ̂

dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2− κ̂2

p
�
1þa2þþa2− −f21−A2

1

2r2

�

¼ 2κyðQ1Q5Þ3=4
�
1

κ̂2
þa2þþa2− −f21−A2

1

3κ̂4

�

≈
2

ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
κ̂

�
1−

a2þþa2−þ5ðf21þA2
1Þ

6κ̂2

�
; ð3:26Þ

where in the last step we expanded for small l and used the
following expression for the turning point:

ðr�Þ2 ≡ κ̂2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
κ2y þ a2þ þ a2− þ f21 þA2

1: ð3:27Þ

Note that we sent r0 → ∞ because the above integral is
convergent. Equation (3.26) should be inverted to express κ̂
in terms of l:

κ̂ ≈
2

ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
l

�
1 −

a2þ þ a2− þ 5ðf21 þA2
1Þ

24Q1Q5

l2
�
: ð3:28Þ

We can now use Eqs. (2.17) and (2.18), and the fact
that RAdS ¼ ðQ1Q5Þ1=4, to compute the EE for the interval
A ¼ ½0; l� in a generic two-charge state at order l2:

SA≈2n1n5

Z
r0

κ̂

drffiffiffiffiffiffiffiffiffiffiffiffiffi
r2− κ̂2

p
�
1−

a2þþa2−þ3ðf21þA2
1Þ

2r2

�

¼2n1n5

�
log

r0ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− κ̂=r0

p Þ
κ̂

−
a2þþa2−þ3ðf21þA2

1Þ
2κ̂2

�

≈2n1n5

�
log

r0lffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p −
a2þþa2−þ2ðf21þA2

1Þ
12Q1Q5

l2
�
:

ð3:29Þ

IV. COMPARING WITH THE CFT EXPECTATION

In this section we show how to interpret the result in
Eq. (3.29) from the CFT point of view. First we need to

introduce a density matrix ρðsÞA that is obtained by starting
from a pure state jsi of the CFT and by tracing over the
degrees of freedom in the complement of region A. We
restrict ourselves to the case where A is a single interval and
jsi is an eigenstate of the CFT Hamiltonian, so the time
evolution of the problem is trivial. Even for these simple
situations, the EE in general depends on all details of the
CFT. Thus, in order to have an analytic approach and match
the supergravity result, we focus on the short interval limit
as discussed above.
As usual [1], we start by considering n independent

copies of the original CFT and then insert at the endpoints
of the interval A twist fields T �n that introduce a mono-
dromy which identifies two consecutive sheets. For in-
stance if TjðzÞ is the (holomorphic part of the) stress energy
tensor defined on the jth copy, then Tj → Tj�1 when it
goes around the operator T �n. The same monodromy holds
also for the antiholomorphic fields. Properties and corre-
lators of twist fields have been extensively discussed in
several contexts; for a discussion inspired by AdS/CFT see
[34–36]. Even the simplest correlators in the presence
of twist fields are defined on a complicated world sheet
that is obtained by gluing at the positions of the T s the
different sheets where each copy of the CFT is defined. In
general the EE of the interval A ¼ ½0; l� in the state jsi is
given by5

SðsÞA ¼ −
∂
∂n S

ðsÞ
n jn¼1; SðsÞn ¼ hsjT nðz; z̄ÞT −nðw; w̄Þjsi;

ð4:2Þ

where

z − w ¼ i
l
R

ð4:3Þ

4This conclusion can also be verified directly from the
equations of Sec. II A: it follows from (2.14) that κt is of order
ĝEty and from (2.15) and (2.17) one sees that the EE receives
contributions that are either proportional to κ2t or to ĝEtyκt.

5Rényi entropies SðsÞRn are related to SðsÞn as

SðsÞRn ¼ 1

1 − n
log SðsÞn : ð4:1Þ
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is a point in the complex plane at a distance l from the
origin, in a constant time slice.
In the limit of small intervals, all the information we need

about the branched world sheet is encoded in the operator
product expansion (OPE) of the product of two twist fields
[11,37,38],

T nðz; z̄ÞT −nðw; w̄Þ

¼ jz − wj−4Δ
�
1þ

X
K

ðz − wÞΔK ðz̄ − w̄ÞΔ̄KDKOKð0Þ
�
:

ð4:4Þ

HereOK is a set of quasiprimary operators living in the nth
product Cn of the original CFT C,DK is the OPE coefficient
for the operator OK, ΔK and Δ̄K are the dimensions of the
holomorphic and the antiholomorphic parts of OK , and
Δ ¼ Δ̄ ¼ c=24ðn − 1=nÞ is the conformal dimension of
T n. It is important for our purposes that the operators
appearing in the OPE are untwisted, i.e. they are products
of operators OðjÞ defined in the original CFT on each sheet
separately: O ¼ Oð1Þ ⊗ … ⊗ OðnÞ. By following the stan-
dard treatment used in the setup of two disjoint intervals
[11,37,38] we order the contributions to the OPE (4.4)
according to the number of constituents that are nontrivial
(OðjÞ ≠ 1). So we can write

T nðz; z̄ÞT −nðw; w̄Þ

¼ jz − wj−4Δ
�
1þ

X
K;j

ðz − wÞΔK ðz̄ − w̄ÞΔ̄KdðjÞK OðjÞ
K

þ
X

K;L;j1≠j2

ðz − wÞΔKþΔLðz̄ − w̄ÞΔ̄KþΔ̄Ldðj1;j2ÞKL

×Oðj1Þ
K ⊗ Oðj2Þ

L þ � � �
�
: ð4:5Þ

Clearly in the small jzj limit we can focus on the operators
with the smallest dimension. In any conformal block the
operator with the smallest dimension is of course the
primary operator. When only the operator on the jth sheet

OðjÞ
K is nontrivial, the OPE coefficient DK is indicated as

dðjÞK . This coefficient is proportional to the one-point

function of OðjÞ
K on the nth sheeted surface, which can

be mapped to the complex plane by an nth valued
conformal map [11]; since primary operators transform
homogeneously under conformal transformations, the cor-

responding dðjÞK s are proportional to the one-point functions
on the complex plane that vanish for nontrivial primaries.

Thus dðjÞK ¼ 0 when OðjÞ
K is primary. Nonprimary operators

can instead have dðjÞK ≠ 0, as it is the case for the stress
energy tensor, which is the nonprimary with the smallest
dimension. However the states we consider are RR ground

states, and in these states the stress energy tensor has a
vanishing vacuum expectation value (VEV), as it was
verified in [39].
Hence, the first nontrivial contribution which is of

interest to us comes from the second term in (4.5), with
nontrivial operators on two distinct copies of C. We can
moreover restrict the two operators to be primaries, as this
will give the dominant contribution for small jzj. In this

case the OPE coefficients will be indicated as dðj1;j2ÞKL and
have a simple general expression [11,38]

dðj1;j2ÞKL ¼
X
K0;L0

ðN −1ÞKL;K0L0 lim
z→∞

jzj4Δ

× h0jT nðz; z̄ÞOðj1Þ
K0 ⊗ Oðj2Þ

L0 ð1ÞT −nð0Þj0i

¼
X
K0;L0

ðN −1ÞKL;K0L0N K0L0

�
1

2in
1

sin πjj1−j2j
n

�
2ΔK0

×

�
1

−2in
1

sin πjj1−j2j
n

�
2Δ̄K0

; ð4:6Þ

where N KL;K0L0 is given by the vacuum two-point function

of the operators in Cn (such as O ¼ Oðj1Þ
K ⊗ Oðj2Þ

L ),

N KL;K0L0 ¼ h0jOKð1ÞOK0 ð0Þj0ih0jOLð1ÞOL0 ð0Þj0i;
ð4:7Þ

while the normalization N K0L0 is defined by the following
correlator in C:

N K0L0 ¼ h0jOK0 ð1ÞOL0 ð0Þj0i: ð4:8Þ

This correlator is nontrivial only when ΔK0 ¼ ΔL0 , which
was used to simplify (4.6).
Substituting (4.5) and (4.6) in (4.2), we find

SðsÞn ¼ 1

l4Δ

�
1þ

X
K;L

�
l

2nR

�
2ðΔKþΔ̄KÞhOKLis

×
Xn−1
k¼1

n − k

ðsin πk
n Þ2ðΔKþΔ̄KÞ

�
; ð4:9Þ

where

hOKLis ≡
X
K0;L0

ðN −1ÞKL;K0L0N K0L0 hsjOK0 jsihsjOL0 jsi

ð4:10Þ

is given in terms of the VEVs of the primary operators OK
in the state jsi computed in one copy of the original CFT C.
We have used the fact thatN KL;K0L0 is nontrivial only in the
subspaces withΔK ¼ ΔK

0 andΔL ¼ ΔL
0 to replace theΔK

0
in (4.6) with ΔK . The factor n − k appearing in the sum
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over k accounts for the number of terms in the sums over j1
and j2 with jj1 − j2j ¼ k.
From now on, we specialize our analysis to the D1-D5

SCFT CD1D5 mentioned in the introduction. In particular
the SUð2Þ × SUð2Þ R-symmetry of this superconformal
field theory (SCFT) plays an important role in our

calculation. The above expression for SðsÞn is valid at any
point in the moduli space of CD1D5. However, for generic
primaries OK , both the conformal dimensions ðΔK; Δ̄KÞ
and the VEVs hOKLis are nonprotected quantities and
might depend on the couplings. This is hardly a surprise,
and indeed entanglement and Rényi entropies do not enjoy
in general any nonrenormalization property. In particular

the value of SðsÞA derived from (4.9) at the free orbifold point
of CD1D5 does not match with the gravity result (3.29).
When the coupling is increased towards the regime where
classical gravity is valid, most of the primary operators will
get higher and higher conformal dimensions, and their
contribution to (4.9) will become more and more negli-
gible. Hence to compare with gravity one should keep in
(4.9) only the chiral primary operators, whose dimensions
are finite in the strong coupling regime. The VEVof a chiral
primary OK in a 1=4-BPS state is equal to the three-point
correlator in the vacuum of three chiral primary operators
(the other two being the operators that generate the BPS
state when acting on the vacuum). These correlators are
known to be protected [40,41]. Hence we can compute the
VEVs hOKis at the free point of the CFT or, holograph-
ically, from the gravity solution, and the two results should
match. The holographic computation of the VEVs has been
done in [26,39]. Of course to compare with gravity one
should also take the limit of large central charge
c ¼ 6n1n5 ≫ 1. As we will show below, with our con-
ventions the one-point functions hOKis and the normal-
izations N KL are proportional to c, and the coefficients
N KL;K0L0 are proportional to c2. Remembering also that the
dimension of the twist fields is linear in c, one sees that
every term in (4.9) gives a contribution to the EE of order c.
Our computation has to be contrasted with the computation
of EE for two (or more) small intervals in the vacuum
[3,4,38]: in that case one has to take the product of two
(or more) copies of the OPE in (4.5) and evaluate their
correlator in the vacuum. From (4.5) and (4.6) one can see
that in this case the contribution from nontrivial primaries is
of order c0. Thus the EE for more than one interval in the
vacuum at large c is a universal quantity, which receives
contributions proportional to c only from the conformal
block of the identity.
In the D1-D5 SCFT, the first nontrivial chiral primaries

have total dimension ΔK þ Δ̄K ¼ 1 and will thus contrib-
ute corrections of order l2 to the EE: these are precisely the
corrections expected from (3.29). For operators with this
conformal dimension, the sum over k appearing in (4.9)
becomes

Xn−1
k¼1

n − k

sin2 πk
n

¼ n
2

Xn−1
k¼1

1

sin2 πk
n

¼ −2n2
I

dz
2πi

1

ð1 − znÞðz2 − 2zþ 1Þ

¼ nðn2 − 1Þ
6

; ð4:11Þ

where in the last step we rewrote the sum as a standard
anticlockwise contour integral over z ¼ e2πik=n around
z ¼ 1.
The chiral primaries with total dimension 1 that are

relevant for our purposes are the holomorphic and anti-
holomorphic SUð2Þ × SUð2Þ currents Jα and ~Jα and the

operators of dimension ð1=2; 1=2Þ denoted as Oð1;1Þ
ð1Þ1 and

Oð0;0Þ
ð2Þ in [26] [actually the last two operators form qua-

druplets which transform as vectors of the SOð4Þ acting on
the S3 coordinates]. The VEVs of these operators are
related with the gravity parameters aα�,A1i, and f11i as [26]

hJαis ¼ cJaαþ; h~Jαis ¼ c~Jaα−;

hOð1;1Þ
ð1Þ1iis ¼ cOð1;1ÞA1i; hOð2;2Þ

ð2Þi is ¼ cOð2;2Þf11i; ð4:12Þ

where the coefficients c depend on the choice of normali-
zation for the various operators. R-symmetry implies that
the nonvanishing two-point functions are

h0jJαð1ÞJβð0Þj0i ¼ N Jδ
αβ;

h0j ~Jαð1Þ~Jβð0Þj0i ¼ N ~Jδ
αβ;

h0jOð1;1Þ
ð1Þ1ið1ÞOð1;1Þ

ð1Þ1jð0Þj0i ¼ N Oð1;1Þδij;

h0jOð2;2Þ
ð2Þi ð1ÞOð2;2Þ

ð2Þj ð0Þj0i ¼ N Oð2;2Þδij: ð4:13Þ

Then the EE obtained from (4.2) and (4.9) has the form

SðsÞA ¼
�
2n1n5 log

l
R
−

l2

12R2
ðN −1

J c2Ja
2þ þN −1

~J
c2~Ja

2
−

þN −1
Oð1;1Þc2Oð1;1ÞA2

1 þN −1
Oð2;2Þc2Oð2;2Þf21Þ

�
; ð4:14Þ

which agrees, in structure, with the gravity result (3.29). To
refine the comparison and determine also the numerical
coefficients, one needs to know the precise normalization
of the various operators. We fix the normalizations by
comparison with the particular two-charge geometry which
was first considered in Sec. VI D of [26], where the
corresponding state in the language of the dual CFT was
also identified. An explicit representation of this state at the
free orbifold point of the CFT was worked out in [42].
It is straightforward to check that this state has nontrivial

VEVs for J3, ~J3, and Oð1;1Þ
ð1Þ , and this enables us to uniquely
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determine the values of cJ, c ~J, cOð1;1Þ , N J, N ~J, N Oð1;1Þ . The

operatorOð0;0Þ
ð2Þ is of a qualitatively different nature, because

it involves a twist field of the orbifold CFT: we will leave
the analysis of states with nontrivial VEVs of this operator
to a future investigation, and for the moment restrict to
geometries with f21 ¼ 0.
The values of the parameters aα;� and A1i for the two-

charge geometry under consideration can be read off from
Eqs. (3.11) of [42], using the identifications A≡ − βþωffiffi

2
p ,

A≡ Z4. After expanding these quantities for large r and
comparing with (3.8), one finds the following nontrivial
values:

a3þ ¼ −a3− ¼ Ra2

2
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p ; A11 ¼
Rab

2
ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p ; ð4:15Þ

where the radius R is related with other parameters of the
geometry by

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

a2 þ b2
2

s
: ð4:16Þ

The relevant CFT operators are given by6

J3 ¼
X
l

1

2
ðχ1lχ̄1l þ χ2lχ̄

2
lÞ; ~J3 ¼

X
l

1

2
ð~χ1l ~̄χ1l þ ~χ2l ~̄χ

2
lÞ;

ð4:17Þ

O≡Oð1;1Þ
ð1Þ11 þ iOð1;1Þ

ð1Þ12 ¼
1ffiffiffi
2

p
X
l

ðχ̄1l ~̄χ2l − χ̄2l ~̄χ
1
lÞ; ð4:18Þ

where the sum over l runs over the n1n5 copies of the
orbifold CFT. From these expressions it is immediate to
compute the normalizations

N J ¼ N ~J ¼
n1n5
2

; NOð1;1Þ ¼ n1n5: ð4:19Þ

The state dual to this geometry is

jsi ¼
Xn1n5
k¼0

Ck
Ok

k!
jn1n5=2i; ð4:20Þ

where jn1n5=2i is the unique two-charge state with
J3 ¼ ~J3 ¼ n1n5=2, and the coefficients Ck are

Ck ¼
�

Raffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
�

n1n5−k
�

Rb
2

ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
�

k
: ð4:21Þ

One can thus explicitly compute the VEVs of the relevant
operators on this state:

hJ3is ¼ h ~J3is ¼
n1n5
2

R2a2

Q1Q5

; hOis ¼ n1n5
R2ab
Q1Q5

:

ð4:22Þ
Comparing these VEVs with (4.12) and (4.15), one finds

cJ ¼ c~J ¼ n1n5
Rffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p ; cOð1;1Þ ¼ 2n1n5
Rffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p :

ð4:23Þ
Substituting in (4.14) one gets

SðsÞA ¼ 2n1n5

�
log

l
R
−

l2

12Q1Q5

ða2þ þ a2− þ 2A2
1Þ
�
;

ð4:24Þ

which matches with (3.29), when f21 ¼ 0.

V. DISCUSSION

In this paper we focused on the EE for a single interval in
a 1þ 1 CFT. It is well known that this quantity depends
only on the CFT central charge in the simplest case [1],
i.e. when the EE is calculated by using a density matrix
obtained starting from the SLð2;CÞ invariant vacuum of
the CFTand tracing over the degrees of freedom outside the
interval. Not surprisingly, the situation is more complicated
if one starts from a generic eigenstate jsi of the CFT
Hamiltonian. In order to discuss analytically the EE SðsÞ in
these situations, we studied the short interval expansion and
showed that already the first subleading term depends both
on the details of the CFT and the state used to derive the
density matrix.
We focused in particular on the SCFT that is dual (in the

AdS/CFT sense) to the D1-D5 system in type IIB string
theory. This duality provides a precise setting to carry out
the same calculation holographically by working with
explicit geometries that solve the supergravity equations.
We studied in particular the simplest class of regular
geometries that are 1=4-BPS. Even in this very simple
case the EE SðsÞ for a single interval depends on the details
of the CFT, including the values of the various moduli.
In the strongly coupled regimewhere supergravity is a good
approximation we can compare the holographic result
against the CFT expectation. In particular we showed that
the holographic VEVs derived in [26,39] are in perfect
agreement with the result for the EE obtained from the
generalization of the RT=HRT formula proposed in (2.2)
that applies to six-dimensional spacetimes asymptotic to
AdS3 × S3. We thus verify that the RT=HRT holographic
formalism for the computation of EE holds also in the
presence of nonuniversal contributions.

6The χs are free fermionic fields and we follow the notation
of [42].
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It is interesting to compare our results with those of [12],
where the thermodynamics properties of the EE for excited
states were first discussed. Since we focus on states that are
not a small perturbation of the ground state, the final results
are qualitatively different. For instance we have to deal in
general with a nontrivial dependence on the coordinates
outside the AdS space and so the natural approach is to
consider the minimal area of a four-dimensional manifold
which extends in the S3 directions. This also implies that
the relation between the variation of the EE and the
variation of the energy stored in the interval for different
states does not follow the standard first law–like formula
for small perturbations of the vacuum state [12]. In the case
analyzed in this paper, all 1=4-BPS states have the same
(zero) energy density while the EE changes. A violation of
the first law–like relation for large time-dependent pertur-
bations was also noted in [15].
There are of course several possible generalizations of

the analysis presented here that might be interesting to
pursue. We expect the generic features of the holographic
calculation to be common also to higher dimensional cases,
such as the 1=2-BPS geometries of [43] that are dual to
states in N ¼ 4 SYM. On the CFT side the EE is not
captured by correlators among local operators anymore,
but it would still be interesting to study holographically the
dependence of the EE on the particular state (geometry)
considered. Another application of the approach described
here is to use the EE as an observable characterizing the
different microstate geometries that have the same asymp-
totic charges. It would certainly be interesting to extend

our analysis to 1=8-BPS (three-charge) configurations and
to large intervals. In the latter case the relevant manifold
describing the EE extends deep inside the AdS geometry
and will be sensitive to the fine details of the different
microstates. However, as seen in this paper, even the first
subleading term in the short interval expansion depends on
the particular microstate geometry considered. So even this
simple case could be used to study the relation between the
EE of generic microstates and the thermal state describing
the black hole with the same charges. We hope to clarify at
least some of these issues in a future work.
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