655 research outputs found

    Free Flyer Total and Spectral Solar Irradiance Sensor (TSIS) and Climate Services Mission

    Get PDF
    NOAA's planned Total and Spectral Solar Irradiance Sensor (TSIS) mission will fly along with the NOAA user service payloads Advanced Data Collection System (ADCS) and Search and Rescue Satellite Aided Tracking (SARSAT). In ' order to guarantee continuity in the 33-year solar irradiance climate data record, TSIS must be launched in time to overlap with current on-orbit solar irradiance instruments. Currently TSIS is moving towards a launch rcadin~ss date of January 2015. TSIS provides for continuation of the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) ,currently onboard NASA's Solar Radiation and Climate Experiment (SORCE) platform, launched in January 2003. The difficulty of ensuring continuity has increased due to the launch failure of NASA's Glory mission with its improved TIM. Achieving the needed overlap must now rely on extending SORCE. and maintaining the TSIS schedule. TSIS is one component of a NASA-NOAA joint program (JPSS) planned to transition certain climate observations to operational mode. We summarize issues of continuity, improvements being made to the TIM and 81M sensors, and plans to provide for traceability of total and spectral irradiance measurements to ground-based cryogenic standards

    Solar Spectral Irradiance and Climate

    Get PDF
    Spectrally resolved solar irradiance is recognized as being increasingly important to improving our understanding of the manner in which the Sun influences climate. There is strong empirical evidence linking total solar irradiance to surface temperature trends - even though the Sun has likely made only a small contribution to the last half-century's global temperature anomaly - but the amplitudes cannot be explained by direct solar heating alone. The wavelength and height dependence of solar radiation deposition, for example, ozone absorption in the stratosphere, absorption in the ocean mixed layer, and water vapor absorption in the lower troposphere, contribute to the "top-down" and "bottom-up" mechanisms that have been proposed as possible amplifiers of the solar signal. New observations and models of solar spectral irradiance are needed to study these processes and to quantify their impacts on climate. Some of the most recent observations of solar spectral variability from the mid-ultraviolet to the near-infrared have revealed some unexpected behavior that was not anticipated prior to their measurement, based on an understanding from model reconstructions. The atmospheric response to the observed spectral variability, as quantified in climate model simulations, have revealed similarly surprising and in some cases, conflicting results. This talk will provide an overview on the state of our understanding of the spectrally resolved solar irradiance, its variability over many time scales, potential climate impacts, and finally, a discussion on what is required for improving our understanding of Sun-climate connections, including a look forward to future observations

    The shortwave radiative forcing bias of liquid and ice clouds from MODIS observations

    Get PDF
    We present an assessment of the plane-parallel bias of the shortwave cloud radiative forcing (SWCRF) of liquid and ice clouds at 1 deg scales using global MODIS (Terra and Aqua) cloud optical property retrievals for four months of the year 2005 representative of the meteorological seasons. The (negative) bias is estimated as the difference of SWCRF calculated using the Plane-Parallel Homogeneous (PPH) approximation and the Independent Column Approximation (ICA). PPH calculations use MODIS-derived gridpoint means while ICA calculations use distributions of cloud optical thickness and effective radius. Assisted by a broadband solar radiative transfer algorithm, we find that the absolute value of global SWCRF bias of liquid clouds at the top of the atmosphere is about 6 W m<sup>−2</sup> for MODIS overpass times while the SWCRF bias for ice clouds is smaller in absolute terms by about 0.7 W m<sup>−2</sup>, but with stronger spatial variability. If effective radius variability is neglected and only optical thickness horizontal variations are accounted for, the absolute SWCRF biases increase by about 0.3–0.4 W m<sup>−2</sup> on average. Marine clouds of both phases exhibit greater (more negative) SWCRF biases than continental clouds. Finally, morning (Terra)–afternoon (Aqua) differences in SWCRF bias are much more pronounced for ice clouds, up to about 15% (Aqua producing stronger negative bias) on global scales, with virtually all contribution to the difference coming from land areas. The substantial magnitude of the global SWCRF bias, which for clouds of both phases is collectively about 4 W m<sup>−2</sup> for diurnal averages, should be considered a strong motivation for global climate modelers to accelerate efforts linking cloud schemes capable of subgrid condensate variability with appropriate radiative transfer schemes

    Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    Get PDF
    We report a series of experiments to explore clima~ responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations

    How to Perform Umbilical Cord Arterial and Venous Blood Sampling in Neonatal Foals

    Get PDF
    Umbilical cord arterial and venous blood gas analysis is a commonly performed procedure in human neonatal medicine to help ascertain a newborn infant’s oxygenation and acid-base status prior to birth. Defined protocols for performing the procedure have been described in the medical literature. The aim of this report was to describe in detail the procedure for collecting paired blood samples from the umbilical artery and vein in newborn foals so that stall-side blood gas analysis could be carried out. Thirty-five Thoroughbred foals >320 days gestation from mares at one stud farm were sampled. Paired umbilical arterial and venous whole-blood samples were obtained in n=30 foals, umbilical artery only samples obtained in n=3 and umbilical vein only samples obtained in n=2 foals. There were no adverse events or clinical outcomes associated with the sampling protocol described. The authors found that umbilical cord blood collection for blood gas analysis was a practical clinical technique that potentially could be used as a stall-side method for assessing the in utero oxygenation and acid-base status of newborn foals

    Ca2+ influx pathways mediated by swelling or stores depletion in mouse thymocytes.

    Full text link

    Capacitative Calcium Entry Deficits and Elevated Luminal Calcium Content in Mutant Presenilin-1 Knockin Mice

    Get PDF
    Dysregulation of calcium signaling has been causally implicated in brain aging and Alzheimer's disease. Mutations in the presenilin genes (PS1, PS2), the leading cause of autosomal dominant familial Alzheimer's disease (FAD), cause highly specific alterations in intracellular calcium signaling pathways that may contribute to the neurodegenerative and pathological lesions of the disease. To elucidate the cellular mechanisms underlying these disturbances, we studied calcium signaling in fibroblasts isolated from mutant PS1 knockin mice. Mutant PS1 knockin cells exhibited a marked potentiation in the amplitude of calcium transients evoked by agonist stimulation. These cells also showed significant impairments in capacitative calcium entry (CCE, also known as store-operated calcium entry), an important cellular signaling pathway wherein depletion of intracellular calcium stores triggers influx of extracellular calcium into the cytosol. Notably, deficits in CCE were evident after agonist stimulation, but not if intracellular calcium stores were completely depleted with thapsigargin. Treatment with ionomycin and thapsigargin revealed that calcium levels within the ER were significantly increased in mutant PS1 knockin cells. Collectively, our findings suggest that the overfilling of calcium stores represents the fundamental cellular defect underlying the alterations in calcium signaling conferred by presenilin mutations

    Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport

    Get PDF
    Neurological disorders are prevalent in horses, but their study is challenging due to anatomic constraints and the large body size; very few host-specific in vitro models have been established to study these types of diseases, particularly from adult donor tissue. Here we report the generation of primary neuronal dorsal root ganglia (DRG) cultures from adult horses: the mixed, dissociated cultures, containing neurons and glial cells, remained viable for at least 90 days. Similar to DRG neurons in vivo, cultured neurons varied in size, and they developed long neurites. The mitochondrial movement was detected in cultured cells and was significantly slower in glial cells compared to DRG-derived neurons. In addition, mitochondria were more elongated in glial cells than those in neurons. Our culture model will be a useful tool to study the contribution of axonal transport defects to specific neurodegenerative diseases in horses as well as comparative studies aimed at evaluating species-specific differences in axonal transport and survival

    Chloride channels activated by osmotic stress in T lymphocytes.

    Full text link
    • …
    corecore