214 research outputs found

    Functional Maps Representation on Product Manifolds

    Get PDF
    We consider the tasks of representing, analyzing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry of its own, which we exploit to define map operations in the spectral domain; we also derive relationships with other existing representations (soft maps and functional maps). To apply these ideas in practice, we discretize product manifolds and their Laplace--Beltrami operators, and we introduce localized spectral analysis of the product manifold as a novel tool for map processing. Our framework applies to maps defined between and across 2D and 3D shapes without requiring special adjustment, and it can be implemented efficiently with simple operations on sparse matrices.Comment: Accepted to Computer Graphics Foru

    The evolution of density perturbations in f(R) gravity

    Full text link
    We give a rigorous and mathematically well defined presentation of the Covariant and Gauge Invariant theory of scalar perturbations of a Friedmann-Lemaitre-Robertson-Walker universe for Fourth Order Gravity, where the matter is described by a perfect fluid with a barotropic equation of state. The general perturbations equations are applied to a simple background solution of R^n gravity. We obtain exact solutions of the perturbations equations for scales much bigger than the Hubble radius. These solutions have a number of interesting features. In particular, we find that for all values of n there is always a growing mode for the density contrast, even if the universe undergoes an accelerated expansion. Such a behaviour does not occur in standard General Relativity, where as soon as Dark Energy dominates, the density contrast experiences an unrelenting decay. This peculiarity is sufficiently novel to warrant further investigation on fourth order gravity models.Comment: 21 pages, 2 figures, typos corrected, submitted to PR

    Interpolation in non-positively curved K\"ahler manifolds

    Full text link
    We extend to any simply connected K\"ahler manifold with non-positive sectional curvature some conditions for interpolation in C\mathbb{C} and in the unit disk given by Berndtsson, Ortega-Cerd\`a and Seip. The main tool is a comparison theorem for the Hessian in K\"ahler geometry due to Greene, Wu and Siu, Yau.Comment: 9 pages, Late

    The evolution of cosmological gravitational waves in f(R) gravity

    Full text link
    We give a rigorous and mathematically clear presentation of the Covariant and Gauge Invariant theory of gravitational waves in a perturbed Friedmann-Lemaitre-Robertson-Walker universe for Fourth Order Gravity, where the matter is described by a perfect fluid with a barotropic equation of state. As an example of a consistent analysis of tensor perturbations in Fourth Order Gravity, we apply the formalism to a simple background solution of R^n gravity. We obtain the exact solutions of the perturbation equations for scales much bigger than and smaller than the Hubble radius. It is shown that the evolution of tensor modes is highly sensitive to the choice of n and an interesting new feature arises. During the radiation dominated era, their exist a growing tensor perturbation for nearly all choices of n. This occurs even when the background model is undergoing accelerated expansion as opposed to the case of General Relativity. Consequently, cosmological gravitational wave modes can in principle provide a strong constraint on the theory of gravity independent of other cosmological data sets.Comment: 19 pages, 4 figures; v2: corrected to match version accepted for publication in PR

    Optical metrology for immersed diffractive multifocal ophthalmic intracorneal lenses

    Get PDF
    This paper deals with the optical characterization of diffractive multifocal Intra-Corneal Lenses (ICLs) that we have developed in order to correct presbyopia. These diffractive multifocal lenses are made of a very soft material (permeable to oxygen and nutrients), with a thickness smaller than 100 µm and require liquid immersion. As a consequence, most of the conventional metrology methods are unsuited for their characterization. We developed specific setups to measure diffractive efficiencies and Modulation Transfer Function (MTF) adapted to such components. Experimental results are in good agreement with Zemax® simulations. For the best of our knowledge, it is the first time that optical characterization is devoted to the ICLs. Furthermore, most of the IOL’s optical characterizations are focused on far vision MTF and don’t assess the near vision MTF, which we study in this paper

    Evolution of the discrepancy between a universe and its model

    Get PDF
    We study a fundamental issue in cosmology: Whether we can rely on a cosmological model to understand the real history of the Universe. This fundamental, still unresolved issue is often called the ``model-fitting problem (or averaging problem) in cosmology''. Here we analyze this issue with the help of the spectral scheme prepared in the preceding studies. Choosing two specific spatial geometries that are very close to each other, we investigate explicitly the time evolution of the spectral distance between them; as two spatial geometries, we choose a flat 3-torus and a perturbed geometry around it, mimicking the relation of a ``model universe'' and the ``real Universe''. Then we estimate the spectral distance between them and investigate its time evolution explicitly. This analysis is done efficiently by making use of the basic results of the standard linear structure-formation theory. We observe that, as far as the linear perturbation of geometry is valid, the spectral distance does not increase with time prominently,rather it shows the tendency to decrease. This result is compatible with the general belief in the reliability of describing the Universe by means of a model, and calls for more detailed studies along the same line including the investigation of wider class of spacetimes and the analysis beyond the linear regime.Comment: To be published in Classical and Quantum Gravit

    Phase space measure concentration for an ideal gas

    Full text link
    We point out that a special case of an ideal gas exhibits concentration of the volume of its phase space, which is a sphere, around its equator in the thermodynamic limit. The rate of approach to the thermodynamic limit is determined. Our argument relies on the spherical isoperimetric inequality of L\'{e}vy and Gromov.Comment: 15 pages, No figures, Accepted by Modern Physics Letters

    Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part IV: Riesz transforms on manifolds and weights

    Full text link
    This is the fourth article of our series. Here, we study weighted norm inequalities for the Riesz transform of the Laplace-Beltrami operator on Riemannian manifolds and of subelliptic sum of squares on Lie groups, under the doubling volume property and Gaussian upper bounds.Comment: 12 pages. Fourth of 4 papers. Important revision: improvement of main result by eliminating use of Poincar\'e inequalities replaced by the weaker Gaussian keat kernel bound

    Necessary Conditions for Apparent Horizons and Singularities in Spherically Symmetric Initial Data

    Get PDF
    We establish necessary conditions for the appearance of both apparent horizons and singularities in the initial data of spherically symmetric general relativity when spacetime is foliated extrinsically. When the dominant energy condition is satisfied these conditions assume a particularly simple form. Let ρMax\rho_{Max} be the maximum value of the energy density and \ell the radial measure of its support. If ρMax2\rho_{Max}\ell^2 is bounded from above by some numerical constant, the initial data cannot possess an apparent horizon. This constant does not depend sensitively on the gauge. An analogous inequality is obtained for singularities with some larger constant. The derivation exploits Poincar\'e type inequalities to bound integrals over certain spatial scalars. A novel approach to the construction of analogous necessary conditions for general initial data is suggested.Comment: 15 pages, revtex, to appear in Phys. Rev.

    Helicity and the Ma\~n\'e critical value

    Full text link
    We establish a relationship between the helicity of a magnetic flow on a closed surface of genus 2\geq 2 and the Ma\~n\'e critical value.Comment: 9 pages, minor correction
    corecore