42 research outputs found

    Assessing Biofuel Crop Invasiveness: A Case Study

    Get PDF
    BACKGROUND: There is widespread interest in biofuel crops as a solution to the world's energy needs, particularly in light of concerns over greenhouse-gas emissions. Despite reservations about their adverse environmental impacts, no attempt has been made to quantify actual, relative or potential invasiveness of terrestrial biofuel crops at an appropriate regional or international scale, and their planting continues to be largely unregulated. METHODOLOGY/PRINCIPAL FINDINGS: Using a widely accepted weed risk assessment system, we analyzed a comprehensive list of regionally suitable biofuel crops to show that seventy percent have a high risk of becoming invasive versus one-quarter of non-biofuel plant species and are two to four times more likely to establish wild populations locally or be invasive in Hawaii or in other locations with a similar climate. CONCLUSIONS/SIGNIFICANCE: Because of climatic and ecological similarities, predictions of biofuel crop invasiveness in Hawaii are applicable to other vulnerable island and subtropical ecosystems worldwide. We demonstrate the utility of an accessible and scientifically proven risk assessment protocol that allows users to predict if introduced species will become invasive in their region of interest. Other evidence supports the contention that propagule pressure created by extensive plantings will exacerbate invasions, a scenario expected with large-scale biofuel crop cultivation. Proactive measures, such as risk assessments, should be employed to predict invasion risks, which could then be mitigated via implementation of appropriate planting policies and adoption of the "polluter-pays" principle

    Quantifying uncertainty in predictions of invasiveness

    No full text
    Using the Australian weed risk assessment (WRA) model as an example, we applied a combination of bootstrapping and Bayesian techniques as a means for explicitly estimating the posterior probability of weediness as a function of an import risk assessment model screening score. Our approach provides estimates of uncertainty around model predictions, after correcting for verification bias arising from the original training dataset having a higher proportion of weed species than would be the norm, and incorporates uncertainty in current knowledge of the prior (base-rate) probability of weediness. The results confirm the high sensitivity of the posterior probability of weediness to the base-rate probability of weediness of plants proposed for importation, and demonstrate how uncertainty in this base-rate probability manifests itself in uncertainty surrounding predicted probabilities of weediness. This quantitative estimate of the weediness probability posed by taxa classified using the WRA model, including estimates of uncertainty around this probability for a given WRA score, would enable bio-economic modelling to contribute to the decision process, should this avenue be pursued. Regardless of whether or not this avenue is explored, the explicit estimates of uncertainty around weed classifications will enable managers to make better informed decisions regarding risk. When viewed in terms of likelihood of weed introduction, the current WRA model outcomes of 'accept', 'further evaluate', or 'reject', whilst not always accurate in terms of weed classification, appear consistent with a high expected cost of mistakenly introducing a weed. The methods presented have wider application to the quantitative prediction of invasive species for situations where the base-rate probability of invasiveness is subject to uncertainty, and the accuracy of the screening test imperfect

    Guidance for addressing the Australian Weed Risk Assessment questions.

    Get PDF
    This paper provides guidance on how to address the 49 questions of the Australian Weed Risk Assessment (WRA) system. The WRA was developed in Australia in 1999, and has since been widely adapted for different regions. As interest in implementation and results comparison has increased, the issue of consistency in answering and scoring the questions has become important. As a result, this guidance was developed during the 2007 International WRA Workshop. Suggestions on search methods, data sources and examples are also provided

    Generic ecological impact assessments of alien species in Norway: a semi-quantitative set of criteria

    Get PDF
    The ecological impact assessment scheme that has been developed to classify alien species in Norway is presented. The underlying set of criteria enables a generic and semi-quantitative impact assessment of alien species. The criteria produce a classification of alien species that is testable, transparent and easily adjustable to novel evidence or environmental change. This gives a high scientific and political legitimacy to the end product and enables an effective prioritization of management efforts, while at the same time paying attention to the precautionary principle. The criteria chosen are applicable to all species regardless of taxonomic position. This makes the assessment scheme comparable to the Red List criteria used to classify threatened species. The impact of alien species is expressed along two independent axes, one measuring invasion potential, the other ecological effects. Using this two-dimensional approach, the categorization captures the ecological impact of alien species, which is the product rather than the sum of spread and effect. Invasion potential is assessed using three criteria, including expected population lifetime and expansion rate. Ecological effects are evaluated using six criteria, including interactions with native species, changes in landscape types, and the potential to transmit genes or parasites. Effects on threatened species or landscape types receive greater weightings
    corecore