3,644 research outputs found
An experimental study of wine consumers’ willingness to pay for environmental characteristics
The reduction of pesticides use is becoming a priority for the public authorities in many countries. We conducted an experiment with wine consumers to see whether end-consumers value the dissemination of information about environmentally-friendly production practices. The experiment was devised to (i) evaluate whether there is a premium for environmentally-friendly wines, (ii) determine whether or not consumers are sensitive to label owners who implement and guarantee the environmental actions, (iii) and assess the impact of public messages about the consequences of pesticide use. Some 139 participants were divided randomly into two groups. One group had no specific information about the current state of pesticide use in farming. The other group was given information about pesticide use in farming before making their valuations. Becker-DeGroot-Marshak mechanisms revealed that (i) the environmental signal is valued differently depending on who conveyed the information, and that (ii)dissemination of information about the environmental repercussions of farming methods does not significantly affect willingness-to-pay.Willingness to pay, Wine, Effect of information, Experimental economics, Environment, Demand and Price Analysis, Food Consumption/Nutrition/Food Safety,
Coherence scale of the Kondo lattice
It is shown that the large-N approach yields two energy scales for the Kondo
lattice model. The single-impurity Kondo temperature, , signals the onset
of local singlet formation, while Fermi liquid coherence sets in only below a
lower scale, . At low conduction electron density
("exhaustion" limit), the ratio is much smaller than unity, and
is shown to depend only on and not on the Kondo coupling. The physical
meaning of these two scales is demonstrated by computing several quantities as
a function of and temperature.Comment: 4 pages, 4 eps figures. Minor changes. To appear in Phys. Rev. Let
Theory of the temperature and doping dependence of the Hall effect in a model with x-ray edge singularities in d=oo
We explain the anomalous features in the Hall data observed experimentally in
the normal state of the high-Tc superconductors. We show that a consistent
treatment of the local spin fluctuations in a model with x-ray edge
singularities in d=oo reproduces the temperature and the doping dependence of
the Hall constant as well as the Hall angle in the normal state. The model has
also been invoked to justify the marginal-Fermi-liquid behavior, and provides a
consistent explanation of the Hall anomalies for a non-Fermi liquid in d=oo.Comment: 5 pages, 4 figures, To appear in Phys. Rev. B, title correcte
Interaction-induced impeding of decoherence and anomalous diffusion
We study how the interplay of dissipation and interactions affects the
dynamics of a bosonic many-body quantum system. In the presence of both
dissipation and strongly repulsive interactions, observables such as the
coherence and the compressibility display three dynamical regimes: an initial
exponential variation followed by a power-law regime and finally a slow
exponential convergence to their asymptotic values corresponding to the
infinite temperature state. These very long-time scales arise as dissipation
forces the population of states disfavored by interactions. The long-time,
strong coupling dynamics are understood by performing a mapping onto a
classical diffusion process displaying non-Brownian behavior. While both
dissipation and strong interactions tend to suppress coherence when acting
separately, we find that strong interaction impedes the decoherence process
generated by the dissipation.Comment: 5 pages, 3 figure
Covalency, double-counting and the metal-insulator phase diagram in transition metal oxides
Dynamical mean field theory calculations are used to show that for late
transition-metal-oxides a critical variable for the Mott/charge-transfer
transition is the number of d-electrons, which is determined by charge transfer
from oxygen ions. Insulating behavior is found only for a narrow range of
d-occupancy, irrespective of the size of the intra-d Coulomb repulsion. The
result is useful in interpreting 'density functional +U' and 'density
functional plus dynamical mean field' methods in which additional correlations
are applied to a specific set of orbitals and an important role is played by
the 'double counting correction' which dictates the occupancy of these
correlated orbitals. General considerations are presented and are illustrated
by calculations for two representative transition metal oxide systems: layered
perovskite Cu-based "high-Tc" materials, an orbitally non-degenerate
electronically quasi-two dimensional systems, and pseudocubic rare earch
nickelates, an orbitally degenerate electronically three dimensional system.
Density functional calculations yield d-occupancies very far from the Mott
metal-insulator phase boundary in the nickelate materials, but closer to it in
the cuprates, indicating the sensitivity of theoretical models of the cuprates
to the choice of double counting correction and corroborating the critical role
of lattice distortions in attaining the experimentally observed insulating
phase in the nickelates.Comment: 10+ pages, 5 figure
The Finite Temperature Mott Transition in the Hubbard Model in Infinite Dimensions
We study the second order finite temperature Mott transition point in the
fully frustrated Hubbard model at half filling, within Dynamical Mean Field
Theory. Using quantum Monte Carlo simulations we show the existence of a finite
temperature second order critical point by explicitly demonstrating the
existence of a divergent susceptibility as well as by finding coexistence in
the low temperature phase. We determine the location of the finite temperature
Mott critical point in the (U,T) plane. Our study verifies and quantifies a
scenario for the Mott transition proposed in earlier studies (Reviews of Modern
Physics 68, 13, 1996) of this problem.Comment: 4 RevTex pages, uses epsf, 2 figure
Contact dynamics in a gently vibrated granular pile
We use multi-speckle diffusive wave spectroscopy (MSDWS) to probe the
micron-scale dynamics of a granular pile submitted to discrete gentle taps. The
typical time-scale between plastic events is found to increase dramatically
with the number of applied taps. Furthermore, this microscopic dynamics weakly
depends on the solid fraction of the sample. This process is strongly analogous
to the aging phenomenon observed in thermal glassy systems. We propose a
heuristic model where this slowing down mechanism is associated with a slow
evolution of the distribution of the contact forces between particles. This
model accounts for the main features of the observed dynamics.Comment: 4 pages, 4 figure
Hubbard U and Hund's Exchange J in Transition Metal Oxides: Screening vs. Localization Trends from Constrained Random Phase Approximation
In this work, we address the question of calculating the local effective
Coulomb interaction matrix in materials with strong electronic Coulomb
interactions from first principles. To this purpose, we implement the
constrained random phase approximation (cRPA) into a density functional code
within the linearized augmented plane wave (LAPW) framework.
We apply our approach to the 3d and 4d early transition metal oxides SrMO3
(M=V, Cr, Mn) and (M=Nb, Mo, Tc) in their paramagnetic phases. For these
systems, we explicitly assess the differences between two physically motivated
low-energy Hamiltonians: The first is the three-orbital model comprising the
t2g states only, that is often used for early transition metal oxides. The
second choice is a model where both, metal d- and oxygen p-states are retained
in the construction of Wannier functions, but the Hubbard interactions are
applied to the d-states only ("d-dp Hamiltonian"). Interestingly, since -- for
a given compound -- both U and J depend on the choice of the model, so do their
trends within a family of these compounds. In the 3d perovskite series SrMO3
the effective Coulomb interactions in the t2g Hamiltonian decrease along the
series, due to the more efficient screening. The inverse -- generally expected
-- trend, increasing interactions with increasing atomic number, is however
recovered within the more localized "d-dp Hamiltonian". Similar conclusions are
established in the layered 4d perovskites series Sr2MO4 (M=Mo, Tc, Ru, Rh).
Compared to their isoelectronic and isostructural 3d analogues, the 4d 113
perovskite oxides SrMO3 (M=Nb, Mo, Tc) exhibit weaker screening effects.
Interestingly, this leads to an effectively larger U on 4d shells than on 3d
when a t2g model is constructed.Comment: 21 pages, 7 figure
Magnetic Impurity in a Metal with Correlated Conduction Electrons: An Infinite Dimensions Approach
We consider the Hubbard model with a magnetic Anderson impurity coupled to a
lattice site. In the case of infinite dimensions, one-particle correlations of
the impurity electron are described by the effective Hamiltonian of the
two-impurity system. One of the impurities interacts with a bath of free
electrons and represents the Hubbard lattice, and the other is coupled to the
first impurity by the bare hybridization interaction. A study of the effective
two-impurity Hamiltonian in the frame of the 1/N expansion and for the case of
a weak conduction-electron interaction (small U) reveals an enhancement of the
usual exponential Kondo scale. However, an intermediate interaction (U/D = 1 -
3), treated by the variational principle, leads to the loss of the exponential
scale. The Kondo temperature T_K of the effective two-impurity system is
calculated as a function of the hybridization parameter and it is shown that
T_K decreases with an increase of U. The non-Fermi-liquid character of the
Kondo effect in the intermediate regime at the half filling is discussed.Comment: 12 pages with 8 PS figures, RevTe
- …