24 research outputs found

    The Cerebellum Link to Neuroticism: A Volumetric MRI Association Study in Healthy Volunteers

    Get PDF
    Prior research suggests an association between reduced cerebellar volumes and symptoms of depression and anxiety in patients with mood disorders. However, whether a smaller volume in itself reflects a neuroanatomical correlate for increased susceptibility to develop mood disorders remains unclear. The aim of the present study was to examine the relationship between cerebellar volume and neurotic personality traits in a non-clinical subject sample. 3T Structural magnetic resonance imaging scans were acquired, and trait depression and anxiety scales of the revised NEO personality inventory were assessed in thirty-eight healthy right-handed volunteers. Results showed that cerebellar volume corrected for total brain volume was inversely associated with depressive and anxiety-related personality traits. Cerebellar gray and white matter contributed equally to the observed associations. Our findings extend earlier clinical observations by showing that cerebellar volume covaries with neurotic personality traits in healthy volunteers. The results may point towards a possible role of the cerebellum in the vulnerability to experience negative affect. In conclusion, cerebellar volumes may constitute a clinico-neuroanatomical correlate for the development of depression- and anxiety-related symptoms

    The Relation between Gray Matter Morphology and Divergent Thinking in Adolescents and Young Adults

    Get PDF
    Adolescence and early adulthood are developmental time periods during which creative cognition is highly important for adapting to environmental changes. Divergent thinking, which refers to generating novel and useful solutions to open-ended problems, has often been used as a measure of creative cognition. The first goal of this structural neuroimaging study was to elucidate the relationship between gray matter morphology and performance in the verbal (AUT; alternative uses task) and visuo-spatial (CAT; creative ability test) domain of divergent thinking in adolescents and young adults. The second goal was to test if gray matter morphology is related to brain activity during AUT performance. Neural and behavioral data were combined from a cross-sectional study including 25 adolescents aged 15-17 and 20 young adults aged 25-30. Brain-behavior relationships were assessed without a priori location assumptions and within areas that were activated during an AUT-scanner task. Gray matter volume and cortical thickness were not significantly associated with verbal divergent thinking. However, visuo-spatial divergent thinking (CAT originality and fluency) was positively associated with cortical thickness of the right middle temporal gyrus and left brain areas including the superior frontal gyrus and various occipital, parietal, and temporal areas, independently of age. AUT brain activity was not associated with cortical thickness. The results support an important role of a widespread brain network involved in flexible visuo-spatial divergent thinking, providing evidence for a relation between cortical thickness and visuo-spatial divergent thinking in adolescents and young adults. However, studies including visuo-spatial divergent thinking tasks in the scanner are warranted

    Regression analyses between sex steroids and gray matter volumes.

    No full text
    <p><sup>a</sup> Survives Bonferroni correction (α = .0038).</p><p><sup>b</sup> significant sex-by-hormone interaction.</p><p><sup>c</sup> non-significant sex-by-hormone interaction.</p><p>Testosterone levels are defined as the Z-transformation of the log-transformed testosterone levels; Estradiol levels are in pmol/l; LH levels were divided by creatinine levels to correct for variations in urine excretion rate, and log-transformed. All volumes were larger in males compared to females.</p><p>Abbreviations: ES, Estradiol; GM, Gray matter; OFC, Orbitofrontal cortex; TES, testosterone; VOL, volume.</p

    Demographic variables.

    No full text
    <p><sup>a</sup> 19 Females and 14 Males below detection limit, not determined in 9 females.</p><p>Significant differences between males and females: *p<.05; **p<.005.</p><p>Abbreviations: PDS, Puberty Developmental Scale.</p

    Overlap of testosterone and estradiol levels (corrected for age), age effects corrected for testosterone levels and general age-effects on cortical thickness.

    No full text
    <p>A. Estradiol (pmol) related thinning. B. Testosterone (Zlog) related thinning. C. Age-related thinning corrected for testosterone levels (Zlog). D. Age-related thinning. FDR-corrected, p<.05 in all figures.</p

    Age-related differences in autism: The case of white matter microstructure

    Get PDF
    Autism spectrum disorder (ASD) is typified as a brain connectivity disorder in which white matter abnormalities are already present early on in life. However, it is unknown if and to which extent these abnormalities are hard-wired in (older) adults with ASD and how this interacts with age-related white matter changes as observed in typical aging. The aim of this first cross-sectional study in mid- and late-aged adults with ASD was to characterize white matter microstructure and its relationship with age. We utilized diffusion tensor imaging with head motion control in 48 adults with ASD and 48 age-matched controls (30-74 years), who also completed a Flanker task. Intra-individual variability of reaction times (IIVRT) measures based on performance on the Flanker interference task were used to assess IIVRT-white matter microstructure associations. We observed primarily higher mean and radial diffusivity in white matter microstructure in ASD, particularly in long-range fibers, which persisted after taking head motion into account. Importantly, group-by-age interactions revealed higher age-related mean and radial diffusivity in ASD, in projection and association fiber tracts. Subtle dissociations were observed in IIVRT-white matter microstructure relations between groups, with the IIVRT-white matter association pattern in ASD resembling observations in cognitive aging. The observed white matter microstructure differences are lending support to the structural underconnectivity hypothesis in ASD. These reductions seem to have behavioral percussions given the atypical relationship with IIVRT. Taken together, the current results may indicate different age-related patterns of white matter microstructure in adults with ASD. Hum Brain Mapp 38:82-96, 2017. © 2016 Wiley Periodicals, In

    The neural coding of feedback learning across child and adolescent development

    No full text
    The ability to learn from environmental cues is an important contributor to successful performance in a variety of settings, including school. Despite the progress in unraveling the neural correlates of cognitive control in childhood and adolescence, relatively little is known about how these brain regions contribute to learning. In this study, 268 participants aged 8-25 years performed a rule-learning task with performance feedback in a 3T MRI scanner. We examined the development of the frontoparietal network during feedback learning by exploring contributions of age and pubertal development. The pFC showed more activation following negative compared with positive feedback with increasing age. In contrast, our data suggested that the parietal cortex demonstrated a shift from sensitivity to positive feedback in young children to negative feedback in adolescents and adults. These findings were interpreted in terms of separable contributions of the frontoparietal network in childhood to more integrated functions in adulthood. Puberty (testosterone, estradiol, and self-report) did not explain additional variance in neural activation patterns above age, suggesting that development of the frontoparietal network occurs relatively independently from hormonal development. This study presents novel insights into the development of learning, moving beyond a simple frontoparietal immaturity hypothesis

    The neural coding of feedback learning across child and adolescent development

    No full text
    Abstract â–  The ability to learn from environmental cues is an important contributor to successful performance in a variety of settings, including school. Despite the progress in unraveling the neural correlates of cognitive control in childhood and adolescence, relatively little is known about how these brain regions contribute to learning. In this study, 268 participants aged 8-25 years performed a rule-learning task with performance feedback in a 3T MRI scanner. We examined the development of the frontoparietal network during feedback learning by exploring contributions of age and pubertal development. The pFC showed more activation following negative compared with positive feedback with increasing age. In contrast, our data suggested that the parietal cortex demonstrated a shift from sensitivity to positive feedback in young children to negative feedback in adolescents and adults. These findings were interpreted in terms of separable contributions of the frontoparietal network in childhood to more integrated functions in adulthood. Puberty (testosterone, estradiol, and self-report) did not explain additional variance in neural activation patterns above age, suggesting that development of the frontoparietal network occurs relatively independently from hormonal development. This study presents novel insights into the development of learning, moving beyond a simple frontoparietal immaturity hypothesis.
    corecore