51 research outputs found

    Sacrectomía en bloque para tumores gigantes del sacro preservando las raíces de S1. Reporte de nueva técnica quirúrgica y resultado funcional

    Get PDF
    Los tumores primarios de sacro son lesiones raras que se caracterizan por ser localmente agresivos, de naturaleza osteolítica y con gran potencial para recurrir a corto plazo. Se han descrito mútiples opciones de manejo y tratamiento de los mismos, incluyendo quimioterapia y radioterapia además de resección quirúrgica con el fin de proveer control a largo plazo sobre el crecimiento tumoral y/o cura definitiva. (5, 6, 7) Dada la naturaleza histológica de dichas lesiones, la sacrectomía en bloque es la técnica quirúrgica que menos recurrencia local implica (8) sin embargo, dado el compromiso extenso que presentan los tumores sacros en el momento del diagnóstico, usualmente la resección quirurgica implica el sacrificio de raíces nerviosas, impactando directamente en morbilidad a largo plazo. Las complicaciones mayores secundarias que más frecuentemente se observan incluyen alteración para la deambulación, función genitourinaria y gastrointestinal, y finalmente, función sexual. (4). El objetivo del presente articulo es describir tres casos en donde se realizan sacrectomía en bloque de tumores primarios de sacro con preservación de raices nerviosas y sus desenlaces a 36 meses de seguimiento postquirúrgico.Sacral primary tumors are rare lesiones that are characterized to be locally expansive and agressive, often present with osteolysis and with great chances to recurr at short-run term after a first surgical reseccion. There are multiple described options for management and treatment, including radiotherapy and chemotherapy for the relief of pain and surgical reseccion in order to provide long-term control over tumor growth or definitive cure. Given the nature of such lesions, en bloc sacrectomy is the surgical technique that involves less local recurrence, however, given the extensión of sacral tumors at diagnosis, usually surgical resection means sacrificing nerve roots, directly impacting over long-term morbidity. Secondary major complicactions most frequently observed include impaired ambulation, genitourinary, gastrointestinal and sexual function. The aim of this article is to describe three cases where en bloc sacrectomy were performed for management of primary sacral tumors (two gigant cell tumors and one hemangioma) with preservation of nerve roots and their outcome up tu 36 months of postoperative follow-up

    Control antimicrobiano integral: estrategia contra las infecciones nosocomiales en veterinaria

    Get PDF
    El desarrollo de mecanismos de prevención y control frente a los microorganismos nosocomiales son esfuerzos importantes para desarrollar en los hospitales tanto humanos como veterinarios. Entre las estrategias encaminadas a reducir la flora microbiana patógena y la resistencia a múltiples fármacos en los hospitales, se encuentran la reducción de la diseminación de microorganismos por parte del personal a los animales, evitar la adquisición de microorganismos de equipos hospitalarios y de infraestructura, la realización de programas permanentes de limpieza, desinfección y esterilización y un uso racional de los antimicrobianos. Elpresente artículo describe los principios fundamentales del control microbiológico hospitalario, basado en el contexto médico veterinario en Colombia

    YY1 haploinsufficiency causes an intellectual disability syndrome featuring transcriptional and chromatin dysfunction

    Get PDF
    Yin and yang 1 (YY1) is a well-known zinc-finger transcription factor with crucial roles in normal development and malignancy. YY1 acts both as a repressor and as an activator of gene expression. We have identified 23 individuals with de novo mutations or deletions of YY1 and phenotypic features that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define "YY1 syndrome" as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin from affected individuals' cells with antibodies recognizing both ends of the protein, we show that YY1 deletions and missense mutations lead to a global loss of YY1 binding with a preferential retention at high-occupancy sites. Finally, we uncover a widespread loss of H3K27 acetylation in particular on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators.Michele Gabriele, Anneke T. Vulto-van Silfhout, Pierre-Luc Germain, Alessandro Vitriolo, Raman Kumar, Evelyn Douglas, Eric Haan, Kenjiro Kosaki, Toshiki Takenouchi, Anita Rauch, Katharina Steindl, Eirik Frengen, Doriana Misceo, Christeen Ramane J. Pedurupillay, Petter Stromme, Jill A. Rosenfeld, Yunru Shao, William J. Craigen, Christian P. Schaaf, David Rodriguez-Buritica, Laura Farach, Jennifer Friedman, Perla Thulin, Scott D. McLean, Kimberly M. Nugent, Jenny Morton, Jillian Nicholl, Joris Andrieux, Asbjørg Stray-Pedersen, Pascal Chambon, Sophie Patrier, Sally A. Lynch, Susanne Kjaergaard, Pernille M. Tørring, Charlotte Brasch-Andersen, Anne Ronan, Arie van Haeringen, Peter J. Anderson, Zöe Powis, Han G. Brunner, Rolph Pfundt, Janneke H.M. Schuurs-Hoeijmakers, Bregje W.M. van Bon, Stefan Lelieveld, Christian Gilissen, Willy M. Nillesen, Lisenka E.L.M. Vissers, Jozef Gecz, David A. Koolen, Giuseppe Testa, Bert B.A. de Vrie

    Change in Terrestrial Human Footprint Drives Continued Loss of Intact Ecosystems

    Get PDF
    Human pressure mapping is important for understanding humanity's role in shaping Earth's patterns and processes. We provide the latest maps of the terrestrial human footprint and provide an assessment of change in human pressure across Earth. Between 2000 and 2013, 1.9 million km2 of land relatively free of human disturbance became highly modified. Our results show that humanity's footprint is eroding Earth's last intact ecosystems and that greater efforts are urgently needed to retain them

    Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations

    Get PDF
    Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations. Methods: Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required. Results: Only two changes were made to clinical diagnostic criteria reported in 2013: “multiple cortical tubers and/or radial migration lines” replaced the more general term “cortical dysplasias,” and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals. Conclusions: Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families

    Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations

    Get PDF
    Background Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations. Methods Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required. Results Only two changes were made to clinical diagnostic criteria reported in 2013: “multiple cortical tubers and/or radial migration lines” replaced the more general term “cortical dysplasias,” and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals. Conclusions Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families

    Strong floristic distinctiveness across Neotropical successional forests

    Get PDF
    Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained

    Strong floristic distinctiveness across Neotropical successional forests.

    Get PDF
    Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (<20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained
    corecore