2,044 research outputs found
Optical noise correlations and beating the standard quantum limit in advanced gravitational-wave detectors
The uncertainty principle, applied naively to the test masses of a
laser-interferometer gravitational-wave detector, produces a Standard Quantum
Limit (SQL) on the interferometer's sensitivity. It has long been thought that
beating this SQL would require a radical redesign of interferometers. However,
we show that LIGO-II interferometers, currently planned for 2006, can beat the
SQL by as much as a factor two over a bandwidth \Delta f \sim f, if their
thermal noise can be pushed low enough. This is due to dynamical correlations
between photon shot noise and radiation-pressure noise, produced by the LIGO-II
signal-recycling mirror.Comment: 12 pages, 2 figures; minor changes, some references adde
Gravitational waves from inspiraling binary black holes
Binary black holes are the most promising candidate sources for the first
generation of earth-based interferometric gravitational-wave detectors. We
summarize and discuss the state-of-the-art analytic techniques developed during
the last years to better describe the late dynamical evolution of binary black
holes of comparable masses.Comment: References added and updated; few typos correcte
Discriminating between a Stochastic Gravitational Wave Background and Instrument Noise
The detection of a stochastic background of gravitational waves could
significantly impact our understanding of the physical processes that shaped
the early Universe. The challenge lies in separating the cosmological signal
from other stochastic processes such as instrument noise and astrophysical
foregrounds. One approach is to build two or more detectors and cross correlate
their output, thereby enhancing the common gravitational wave signal relative
to the uncorrelated instrument noise. When only one detector is available, as
will likely be the case with the Laser Interferometer Space Antenna (LISA),
alternative analysis techniques must be developed. Here we show that models of
the noise and signal transfer functions can be used to tease apart the
gravitational and instrument noise contributions. We discuss the role of
gravitational wave insensitive "null channels" formed from particular
combinations of the time delay interferometry, and derive a new combination
that maintains this insensitivity for unequal arm length detectors. We show
that, in the absence of astrophysical foregrounds, LISA could detect signals
with energy densities as low as with just
one month of data. We describe an end-to-end Bayesian analysis pipeline that is
able to search for, characterize and assign confidence levels for the detection
of a stochastic gravitational wave background, and demonstrate the
effectiveness of this approach using simulated data from the third round of
Mock LISA Data Challenges.Comment: 10 Pages, 10 Figure
Laser-interferometer gravitational-wave optical-spring detectors
Using a quantum mechanical approach, we show that in a gravitational-wave
interferometer composed of arm cavities and a signal recycling cavity, e.g.,
the LIGO-II configuration, the radiation-pressure force acting on the mirrors
not only disturbs the motion of the free masses randomly due to quantum
fluctuations, but also and more fundamentally, makes them respond to forces as
though they were connected to an (optical) spring with a specific rigidity.
This oscillatory response gives rise to a much richer dynamics than previously
known, which enhances the possibilities for reshaping the LIGO-II's noise
curves. However, the optical-mechanical system is dynamically unstable and an
appropriate control system must be introduced to quench the instability.Comment: 7 pages, 3 figures; to appear in the Proceedings of 4th Edoardo
Amaldi Conference on Gravitational Waves, Perth, Australia, 8-13 July 200
Quantum noise in laser-interferometer gravitational-wave detectors with a heterodyne readout scheme
We analyze and discuss the quantum noise in signal-recycled laser
interferometer gravitational-wave detectors, such as Advanced LIGO, using a
heterodyne readout scheme and taking into account the optomechanical dynamics.
Contrary to homodyne detection, a heterodyne readout scheme can simultaneously
measure more than one quadrature of the output field, providing an additional
way of optimizing the interferometer sensitivity, but at the price of
additional noise. Our analysis provides the framework needed to evaluate
whether a homodyne or heterodyne readout scheme is more optimal for second
generation interferometers from an astrophysical point of view. As a more
theoretical outcome of our analysis, we show that as a consequence of the
Heisenberg uncertainty principle the heterodyne scheme cannot convert
conventional interferometers into (broadband) quantum non-demolition
interferometers.Comment: 16 pages, 8 figure
Multiple stellar populations in Magellanic Cloud clusters. II. Evidence also in the young NGC1844?
We use HST observations to study the LMC's young cluster NGC1844. We estimate
the fraction and the mass-ratio distribution of photometric binaries and report
that the main sequence presents an intrinsic breadth which can not be explained
in terms of photometric errors only, and is unlikely due to differential
reddening. We attempt some interpretation of this feature, including stellar
rotation, binary stars, and the presence of multiple stellar populations with
different age, metallicity, helium, or C+N+O abundance. Although we exclude
age, helium, and C+N+O variations to be responsible of the main-sequence spread
none of the other interpretations is conclusive.Comment: 9 Pages, 11 figures, accepted for publication in A&A
The giant, horizontal and asymptotic branches of galactic globular clusters. I. The catalog, photometric observables and features
A catalog including a set of the most recent Color Magnitude Diagrams (CMDs)
is presented for a sample of 61 Galactic Globular Clusters (GGCs). We used this
data-base to perform an homogeneous systematic analysis of the evolved
sequences (namely, Red Giant Branch (RGB), Horizontal Branch (HB) and
Asymptotic Giant Branch (AGB)). Based on this analysis, we present: (1) a new
procedure to measure the level of the ZAHB (V_ZAHB) and an homogeneous set of
distance moduli obtained adopting the HB as standard candle; (2) an independent
estimate for RGB metallicity indicators and new calibrations of these
parameters in terms of both spectroscopic ([Fe/H]_CG97) and global metallicity
([M/H], including also the alpha-elements enhancement). The set of equations
presented can be used to simultaneously derive a photometric estimate of the
metal abundance and the reddening from the morphology and the location of the
RGB in the (V,B-V)-CMD. (3) the location of the RGB-Bump (in 47 GGCs) and the
AGB-Bump (in 9 GGCs). The dependence of these features on the metallicity is
discussed. We find that by using the latest theoretical models and the new
metallicity scales the earlier discrepancy between theory and observations
(~0.4 mag) completely disappears.Comment: 51 pages, 23 figures, AAS Latex, macro rtrpp4.sty included, accepted
by A
- …