236 research outputs found

    On the role of coupling in mode selective excitation using ultrafast pulse shaping in stimulated Raman spectroscopy

    Full text link
    The coherence of two, coupled two-level systems, representing vibrational modes in a semiclassical model, is calculated in weak and strong fields for various coupling schemes and for different relative phases between initial state amplitudes. A relative phase equal to π\pi projects the system into a dark state. The selective excitation of one of the two, two-level systems is studied as a function of coupling strength and initial phases.Comment: 7 pages, 4 figure

    Laser-Induced Above-Bandgap Transparency in GaAs

    Full text link
    We report the observation of large (∼40\sim 40%) laser-induced above-bandgap transparency in GaAs at room temperature. The induced transparency is present only during the pulse width of the driving midinfrard laser pulses and its spectral shape is consistent with a laser-induced blue shift of the band edge. Our simulations based on the dynamic Franz-Keldysh effect reproduce the salient features of the experimental results, demonstrating in particular that the amount of the band edge shift is approximately given by the ponderomtive potential.Comment: 4 pages, 4 figure

    Coherence measurements on Rydberg wave packets kicked by a half-cycle pulse

    Full text link
    A kick from a unipolar half-cycle pulse (HCP) can redistribute population and shift the relative phase between states in a radial Rydberg wave packet. We have measured the quantum coherence properties following the kick, and show that selected coherences can be destroyed by applying an HCP at specific times. Quantum mechanical simulations show that this is due to redistribution of the angular momentum in the presence of noise. These results have implications for the storage and retrieval of quantum information in the wave packet.Comment: 4 pages, 4 figures (5 figure files

    Probing the evolution of Stark wave packets by a weak half cycle pulse

    Full text link
    We probe the dynamic evolution of a Stark wave packet in cesium using weak half-cycle pulses (HCP's). The state-selective field ionization(SSFI) spectra taken as a function of HCP delay reveal wave packet dynamics such as Kepler beats, Stark revivals and fractional revivals. A quantum-mechanical simulation explains the results as multi-mode interference induced by the HCP.Comment: 4 pages, incl. 3 figures, submitted to PR

    Attosecond Control of Ionization Dynamics

    Get PDF
    Attosecond pulses can be used to initiate and control electron dynamics on a sub-femtosecond time scale. The first step in this process occurs when an atom absorbs an ultraviolet photon leading to the formation of an attosecond electron wave packet (EWP). Until now, attosecond pulses have been used to create free EWPs in the continuum, where they quickly disperse. In this paper we use a train of attosecond pulses, synchronized to an infrared (IR) laser field, to create a series of EWPs that are below the ionization threshold in helium. We show that the ionization probability then becomes a function of the delay between the IR and attosecond fields. Calculations that reproduce the experimental results demonstrate that this ionization control results from interference between transiently bound EWPs created by different pulses in the train. In this way, we are able to observe, for the first time, wave packet interference in a strongly driven atomic system.Comment: 8 pages, 4 figure

    Information hiding and retrieval in Rydberg wave packets using half-cycle pulses

    Get PDF
    We demonstrate an information hiding and retrieval scheme with the relative phases between states in a Rydberg wave packet acting as the bits of a data register. We use a terahertz half-cycle pulse (HCP) to transfer phase-encoded information from an optically accessible angular momentum manifold to another manifold which is not directly accessed by our laser pulses, effectively hiding the information from our optical interferometric measurement techniques. A subsequent HCP acting on these wave packets reintroduces the information back into the optically accessible data register manifold which can then be `read' out.Comment: 4 pages, 4 figure

    Optimal molecular alignment and orientation through rotational ladder climbing

    Full text link
    We study the control by electromagnetic fields of molecular alignment and orientation, in a linear, rigid rotor model. With the help of a monotonically convergent algorithm, we find that the optimal field is in the microwave part of the spectrum and acts by resonantly exciting the rotation of the molecule progressively from the ground state, i.e., by rotational ladder climbing. This mechanism is present not only when maximizing orientation or alignment, but also when using prescribed target states that simultaneously optimize the efficiency of orientation/alignment and its duration. The extension of the optimization method to consider a finite rotational temperature is also presented.Comment: 14 pages, 12 figure
    • …
    corecore