342 research outputs found

    A statistical approach to persistent homology

    Full text link
    Assume that a finite set of points is randomly sampled from a subspace of a metric space. Recent advances in computational topology have provided several approaches to recovering the geometric and topological properties of the underlying space. In this paper we take a statistical approach to this problem. We assume that the data is randomly sampled from an unknown probability distribution. We define two filtered complexes with which we can calculate the persistent homology of a probability distribution. Using statistical estimators for samples from certain families of distributions, we show that we can recover the persistent homology of the underlying distribution.Comment: 30 pages, 2 figures, minor changes, to appear in Homology, Homotopy and Application

    The persistence landscape and some of its properties

    Full text link
    Persistence landscapes map persistence diagrams into a function space, which may often be taken to be a Banach space or even a Hilbert space. In the latter case, it is a feature map and there is an associated kernel. The main advantage of this summary is that it allows one to apply tools from statistics and machine learning. Furthermore, the mapping from persistence diagrams to persistence landscapes is stable and invertible. We introduce a weighted version of the persistence landscape and define a one-parameter family of Poisson-weighted persistence landscape kernels that may be useful for learning. We also demonstrate some additional properties of the persistence landscape. First, the persistence landscape may be viewed as a tropical rational function. Second, in many cases it is possible to exactly reconstruct all of the component persistence diagrams from an average persistence landscape. It follows that the persistence landscape kernel is characteristic for certain generic empirical measures. Finally, the persistence landscape distance may be arbitrarily small compared to the interleaving distance.Comment: 18 pages, to appear in the Proceedings of the 2018 Abel Symposiu

    Graph products of spheres, associative graded algebras and Hilbert series

    Full text link
    Given a finite, simple, vertex-weighted graph, we construct a graded associative (non-commutative) algebra, whose generators correspond to vertices and whose ideal of relations has generators that are graded commutators corresponding to edges. We show that the Hilbert series of this algebra is the inverse of the clique polynomial of the graph. Using this result it easy to recognize if the ideal is inert, from which strong results on the algebra follow. Non-commutative Grobner bases play an important role in our proof. There is an interesting application to toric topology. This algebra arises naturally from a partial product of spheres, which is a special case of a generalized moment-angle complex. We apply our result to the loop-space homology of this space.Comment: 19 pages, v3: elaborated on connections to related work, added more citations, to appear in Mathematische Zeitschrif

    Random geometric complexes

    Full text link
    We study the expected topological properties of Cech and Vietoris-Rips complexes built on i.i.d. random points in R^d. We find higher dimensional analogues of known results for connectivity and component counts for random geometric graphs. However, higher homology H_k is not monotone when k > 0. In particular for every k > 0 we exhibit two thresholds, one where homology passes from vanishing to nonvanishing, and another where it passes back to vanishing. We give asymptotic formulas for the expectation of the Betti numbers in the sparser regimes, and bounds in the denser regimes. The main technical contribution of the article is in the application of discrete Morse theory in geometric probability.Comment: 26 pages, 3 figures, final revisions, to appear in Discrete & Computational Geometr

    Testis and Antler Dysgenesis in Sitka Black-Tailed Deer on Kodiak Island, Alaska: Sequela of Environmental Endocrine Disruption?

    Get PDF
    It had been observed that many male Sitka black-tailed deer (Odocoileus hemionus sitkensis) on Kodiak Island, Alaska, had abnormal antlers, were cryptorchid, and presented no evidence of hypospadias. We sought to better understand the problem and investigated 171 male deer for phenotypic aberrations and 12 for detailed testicular histopathology. For the low-lying Aliulik Peninsula (AP), 61 of 94 deer were bilateral cryptorchids (BCOs); 70% of these had abnormal antlers. Elsewhere on the Kodiak Archipelago, only 5 of 65 deer were BCOs. All 11 abdominal testes examined had no spermatogenesis but contained abnormalities including carcinoma in situ–like cells, possible precursors of seminoma; Sertoli cell, Leydig cell, and stromal cell tumors; carcinoma and adenoma of rete testis; and microlithiasis or calcifications. Cysts also were evident within the excurrent ducts. Two of 10 scrotal testes contained similar abnormalities, although spermatogenesis was ongoing. We cannot rule out that these abnormalities are linked sequelae of a mutation(s) in a founder animal, followed by transmission over many years and causing high prevalence only on the AP. However, based on lesions observed, we hypothesize that it is more likely that this testis–antler dysgenesis resulted from continuing exposure of pregnant females to an estrogenic environmental agent(s), thereby transforming testicular cells, affecting development of primordial antler pedicles, and blocking transabdominal descent of fetal testes. A browse (e.g., kelp) favored by deer in this locale might carry the putative estrogenic agent(s)

    A convenient category of locally preordered spaces

    Full text link
    As a practical foundation for a homotopy theory of abstract spacetime, we extend a category of certain compact partially ordered spaces to a convenient category of locally preordered spaces. In particular, we show that our new category is Cartesian closed and that the forgetful functor to the category of compactly generated spaces creates all limits and colimits.Comment: 26 pages, 0 figures, partially presented at GETCO 2005; changes: claim of Prop. 5.11 weakened to finite case and proof changed due to problems with proof of Lemma 3.26, now removed; Eg. 2.7, statement before Lem. 2.11, typos, and other minor problems corrected throughout; extensive rewording; proof of Lem. 3.31, now 3.30, adde

    The Theory of the Interleaving Distance on Multidimensional Persistence Modules

    Full text link
    In 2009, Chazal et al. introduced ϵ\epsilon-interleavings of persistence modules. ϵ\epsilon-interleavings induce a pseudometric dId_I on (isomorphism classes of) persistence modules, the interleaving distance. The definitions of ϵ\epsilon-interleavings and dId_I generalize readily to multidimensional persistence modules. In this paper, we develop the theory of multidimensional interleavings, with a view towards applications to topological data analysis. We present four main results. First, we show that on 1-D persistence modules, dId_I is equal to the bottleneck distance dBd_B. This result, which first appeared in an earlier preprint of this paper, has since appeared in several other places, and is now known as the isometry theorem. Second, we present a characterization of the ϵ\epsilon-interleaving relation on multidimensional persistence modules. This expresses transparently the sense in which two ϵ\epsilon-interleaved modules are algebraically similar. Third, using this characterization, we show that when we define our persistence modules over a prime field, dId_I satisfies a universality property. This universality result is the central result of the paper. It says that dId_I satisfies a stability property generalizing one which dBd_B is known to satisfy, and that in addition, if dd is any other pseudometric on multidimensional persistence modules satisfying the same stability property, then ddId\leq d_I. We also show that a variant of this universality result holds for dBd_B, over arbitrary fields. Finally, we show that dId_I restricts to a metric on isomorphism classes of finitely presented multidimensional persistence modules.Comment: Major revision; exposition improved throughout. To appear in Foundations of Computational Mathematics. 36 page

    Categorification of persistent homology

    Full text link
    We redevelop persistent homology (topological persistence) from a categorical point of view. The main objects of study are diagrams, indexed by the poset of real numbers, in some target category. The set of such diagrams has an interleaving distance, which we show generalizes the previously-studied bottleneck distance. To illustrate the utility of this approach, we greatly generalize previous stability results for persistence, extended persistence, and kernel, image and cokernel persistence. We give a natural construction of a category of interleavings of these diagrams, and show that if the target category is abelian, so is this category of interleavings.Comment: 27 pages, v3: minor changes, to appear in Discrete & Computational Geometr

    Persistent topology for natural data analysis - A survey

    Full text link
    Natural data offer a hard challenge to data analysis. One set of tools is being developed by several teams to face this difficult task: Persistent topology. After a brief introduction to this theory, some applications to the analysis and classification of cells, lesions, music pieces, gait, oil and gas reservoirs, cyclones, galaxies, bones, brain connections, languages, handwritten and gestured letters are shown

    Topological Machine Learning with Persistence Indicator Functions

    Full text link
    Techniques from computational topology, in particular persistent homology, are becoming increasingly relevant for data analysis. Their stable metrics permit the use of many distance-based data analysis methods, such as multidimensional scaling, while providing a firm theoretical ground. Many modern machine learning algorithms, however, are based on kernels. This paper presents persistence indicator functions (PIFs), which summarize persistence diagrams, i.e., feature descriptors in topological data analysis. PIFs can be calculated and compared in linear time and have many beneficial properties, such as the availability of a kernel-based similarity measure. We demonstrate their usage in common data analysis scenarios, such as confidence set estimation and classification of complex structured data.Comment: Topology-based Methods in Visualization 201
    corecore