234 research outputs found

    GLMN (glomulin)

    Get PDF
    Review on GLMN (glomulin), with data on DNA, on the protein encoded, and where the gene is implicated

    Glomuvenous malformation (GVM)

    Get PDF
    Review on Glomuvenous malformation (GVM), with data on clinics, and the genes involved

    Suppression of Urinary Voiding by Conditional High Frequency Stimulation of the Pelvic Nerve in Conscious Rats:Pelvic nerve stimulation suppresses urinary voiding

    Get PDF
    Female Wistar rats were instrumented to record bladder pressure and to stimulate the left pelvic nerve. Repeated voids were induced by continuous infusion of saline into the bladder (11.2 ml/h) via a T-piece in the line to the bladder catheter. In each animal tested (n = 6) high frequency pelvic nerve stimulation (1–3 kHz, 1–2 mA sinusoidal waveform for 60 s) applied within 2 s of the onset of a sharp rise in bladder pressure signaling an imminent void was able to inhibit micturition. Voiding was modulated in three ways: (1) Suppression of voiding (four rats, n = 13 trials). No fluid output or a very small volume of fluid expelled (<15% of the volume expected based on the mean of the previous 2 or 3 voids). Voiding suppressed for the entirety of the stimulation period (60 s) and resumed within 37 s of stopping stimulation. (2) Void deferred (four rats, n = 6 trials). The imminent void was suppressed (no fluid expelled) but a void occurred later in the stimulation period (12–44 s, mean 24.5 ± 5.2 s after the onset of the stimulation). (3) Reduction in voided volume (five rats, n = 20 trials). Voiding took place but the volume of fluid voided was 15–80% (range 21.8–77.8%, mean 45.3 ± 3.6%) of the volume expected from the mean of the preceding two or three voids. Spontaneous voiding resumed within 5 min of stopping stimulation. Stimulation during the filling phase in between voids had no effect. The experiments demonstrate that conditional high frequency stimulation of the pelvic nerve started at the onset of an imminent void can inhibit voiding. The effect was rapidly reversible and was not accompanied by any adverse behavioral side effects

    Lovastatin Protects against Experimental Plague in Mice

    Get PDF
    Background: Plague is an ectoparasite-borne deadly infection caused by Yersinia pestis, a bacterium classified among the group A bioterrorism agents. Thousands of deaths are reported every year in some African countries. Tetracyclines and cotrimoxazole are used in the secondary prophylaxis of plague in the case of potential exposure to Y. pestis, but cotrimoxazole-resistant isolates have been reported. There is a need for additional prophylactic measures. We aimed to study the effectiveness of lovastatin, a cholesterol-lowering drug known to alleviate the symptoms of sepsis, for plague prophylaxis in an experimental model. Methodology: Lovastatin dissolved in Endolipide was intraperitoneally administered to mice (20 mg/kg) every day for 6 days prior to a Y. pestis Orientalis biotype challenge. Non-challenged, lovastatin-treated and challenged, untreated mice were also used as control groups in the study. Body weight, physical behavior and death were recorded both prior to infection and for 10 days post-infection. Samples of the blood, lungs and spleen were collected from dead mice for direct microbiological examination, histopathology and culture. The potential antibiotic effect of lovastatin was tested on blood agar plates. Conclusions/Significance: Lovastatin had no in-vitro antibiotic effect against Y. pestis. The difference in the mortality between control mice (11/15; 73.5%) and lovastatin-treated mice (3/15; 20%) was significant (P,0.004; Mantel-Haensze

    Chromatin Remodeling Pathways in Smooth Muscle Cell Differentiation, and Evidence for an Integral Role for p300

    Get PDF
    Phenotypic alteration of vascular smooth muscle cells (SMC) in response to injury or inflammation is an essential component of vascular disease. Evidence suggests that this process is dependent on epigenetic regulatory processes. P300, a histone acetyltransferase (HAT), activates crucial muscle-specific promoters in terminal (non-SMC) myocyte differentiation, and may be essential to SMC modulation as well.We performed a subanalysis examining transcriptional time-course microarray data obtained using the A404 model of SMC differentiation. Numerous chromatin remodeling genes (up to 62% of such genes on our array platform) showed significant regulation during differentiation. Members of several chromatin-remodeling families demonstrated involvement, including factors instrumental in histone modification, chromatin assembly-disassembly and DNA silencing, suggesting complex, multi-level systemic epigenetic regulation. Further, trichostatin A, a histone deacetylase inhibitor, accelerated expression of SMC differentiation markers in this model. Ontology analysis indicated a high degree of p300 involvement in SMC differentiation, with 60.7% of the known p300 interactome showing significant expression changes. Knockdown of p300 expression accelerated SMC differentiation in A404 cells and human SMCs, while inhibition of p300 HAT activity blunted SMC differentiation. The results suggest a central but complex role for p300 in SMC phenotypic modulation.Our results support the hypothesis that chromatin remodeling is important for SMC phenotypic switching, and detail wide-ranging involvement of several epigenetic modification families. Additionally, the transcriptional coactivator p300 may be partially degraded during SMC differentiation, leaving an activated subpopulation with increased HAT activity and SMC differentiation-gene specificity

    ExoClock Project. III. 450 New Exoplanet Ephemerides from Ground and Space Observations

    Get PDF
    The ExoClock project has been created to increase the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates, in order to produce a consistent catalog of reliable and precise ephemerides. This work presents a homogenous catalog of updated ephemerides for 450 planets, generated by the integration of ∼18,000 data points from multiple sources. These sources include observations from ground-based telescopes (the ExoClock network and the Exoplanet Transit Database), midtime values from the literature, and light curves from space telescopes (Kepler, K2, and TESS). With all the above, we manage to collect observations for half of the postdiscovery years (median), with data that have a median uncertainty less than 1 minute. In comparison with the literature, the ephemerides generated by the project are more precise and less biased. More than 40% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95%), and also the identification of missing data. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (transit-timing variations) for a sample of 19 planets. All the products, data, and codes used in this work are open and accessible to the wider scientific community

    HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development.

    Get PDF
    Formation of the lymphatic system requires the coordinated expression of several key regulators: vascular endothelial growth factor C (VEGFC), its receptor FLT4, and a key transcriptional effector, PROX1. Yet, how expression of these signaling components is regulated remains poorly understood. Here, using a combination of genetic and molecular approaches, we identify the transcription factor hematopoietically expressed homeobox (HHEX) as an upstream regulator of VEGFC, FLT4, and PROX1 during angiogenic sprouting and lymphatic formation in vertebrates. By analyzing zebrafish mutants, we found that hhex is necessary for sprouting angiogenesis from the posterior cardinal vein, a process required for lymphangiogenesis. Furthermore, studies of mammalian HHEX using tissue-specific genetic deletions in mouse and knockdowns in cultured human endothelial cells reveal its highly conserved function during vascular and lymphatic development. Our findings that HHEX is essential for the regulation of the VEGFC/FLT4/PROX1 axis provide insights into the molecular regulation of lymphangiogenesis

    Intestinal Obstruction Syndromes in Cystic Fibrosis: Meconium Ileus, Distal Intestinal Obstruction Syndrome, and Constipation

    Get PDF
    Meconium ileus at birth, distal intestinal obstruction syndrome (DIOS), and constipation are an interrelated group of intestinal obstruction syndromes with a variable severity of obstruction that occurs in cystic fibrosis patients. Long-term follow-up studies show that today meconium ileus is not a risk factor for impaired nutritional status, pulmonary function, or survival. DIOS and constipation are frequently seen in cystic fibrosis patients, especially later in life; genetic, dietary, and other associations have been explored. Diagnosis of DIOS is based on suggestive symptoms, with a right lower quadrant mass confirmed on abdominal radiography, whereas symptoms of constipation are milder and of longer standing. In DIOS, early aggressive laxative treatment with oral laxatives (polyethylene glycol) or intestinal lavage with balanced osmotic electrolyte solution and rehydration is required, which now makes the need for surgical interventions rare. Constipation can generally be well controlled with polyethylene glycol maintenance treatment
    corecore