140 research outputs found

    Reversal of typical multidrug resistance by cyclosporin and its non-immunosuppressive analogue SDZ PSC 833 in Chinese hamster ovary cells expressing the mdr1 phenotype

    Get PDF
    Summary The new non-immunosuppressive cyclosporin derivative SDZ PSC 833 (PSC) is a potent agent used to overcome typical multidrug resistance (MDR) associated with overexpression of themdr1 gene encoding for a P-170 glycoprotein. In the present study, the efficacy of PSC as compared with cyclosporin was determined in Chinese hamster ovary cell lines exhibiting different levels of resistance to colchicine (0, 0.1, 0.2 and 10 μg/ml, respectively). Low concentrations of PSC (8.2nm) increased the cytotoxicity of colchicine in cell lines expressing low levels of drug resistance. The concentration resulting in 50% cell survival (LC50 value) found for colchicine alone or in combination with PSC in the CHO-A3 cell line that was resistant to 100 ng colchicine/ml decreased from >500 to 200 ng/ml at 8.2nm PSC and to 500 ng/ml for colchicine alone to 500 ng/ml for colchicine used in combination with 8.2nm PSC and to <100 ng/ml for colchicine combined with 82 or 820nm PSC. At a concentration of 82nm PSC, the maximal effect in MDR reversal was observed in the cell lines exhibiting moderate resistance. In the highly resistant cell line, PSC (820nm) also reversed colchicine resistance. In drug-accumulation experiments, we obtained a 4-fold increase in intracellular doxorubicin accumulation using 820nm PSC. A comparison of PSC with cyclosporin revealed that a cyclosporin concentration 20-fold that of PSC was required to obtain the same sensitising effect. On the basis of these data, it may be concluded that PSC is a most promising chemosensitiser

    A three-year study of brain atrophy after autologous hematopoietic stem cell transplantation in rapidly evolving secondary progressive multiple sclerosis

    Get PDF
    BACKGROUND AND PURPOSE: In multiple sclerosis (MS), autologous hematopoietic stem cell transplantation (AHSCT) induces a profound suppression of clinical activity and MR imaging-detectable inflammation, but it may be associated with a rapid brain volume loss in the months subsequent to treatment. The aim of this study was to assess how AHSCT affects medium-term evolution of brain atrophy in MS. MATERIALS AND METHODS: MR imaging scans of the brain from 14 patients with rapidly evolving secondary-progressive MS obtained 3 months before and every year after AHSCT for 3 years were analyzed. Baseline normalized brain volumes and longitudinal percentage of brain volume changes (PBVCs) were assessed using the Structural Image Evaluation of Normalized Atrophy software. RESULTS: The median decrease of brain volume was 1.92% over the first year after AHSCT and then declined to 1.35% at the second year and to 0.69% at the third year. The number of enhancing lesions seen on the pretreatment scans was significantly correlated with the PBVCs between baseline and month 12 (r = -0.62; P = .02); no correlation was found with the PBVCs measured over the second and third years. CONCLUSIONS: After AHSCT, the rate of brain tissue loss in patients with MS declines dramatically after the first 2 years. The initial rapid development of brain atrophy may be a late consequence of the pretransplant disease activity and/or a transient result of the intense immunoablative conditioning procedure

    COVID-19-associated immune thrombocytopenia

    Get PDF
    Thrombocytopenia is a risk factor for increased morbidity and mortality in patients with the new severe acute respiratory syndrome corona virus, SARS-CoV-2 infection (COVID-19 infection).1 Thrombocytopenia in COVID-19 patients may be caused by disseminated intravascular coagulation (DIC), sepsis or drug-induced. Recently a single case report suggested immune thrombocytopenia (ITP) may be associated with COVID-19 infection.2 ITP is a rare autoimmune disease characterized by a platelet count < 100x109/L, leading to an increased bleeding risk.3 Several risk factors have been described for ITP including environmental (e.g. infection, malignancy and drugs) and genetic predisposition.4 We report here the first case series of three patients with ITP associated with COVID-19 infection

    Daratumumab monotherapy in refractory warm autoimmune hemolytic anemia and cold agglutinin disease

    Get PDF
    Autoimmune hemolytic anemia (AIHA) is a rare autoantibody-mediated disease. For steroid and/or rituximab-refractory AIHA, there is no consensus on optimal treatment. Daratumumab, a monoclonal antibody targeting CD38, could be beneficial by suppression of CD38+ plasma cells and thus autoantibody secretion. In addition, because CD38 is also expressed by activated T cells, daratumumab may also act via immunomodulatory effects. We evaluated the efficacy and safety of daratumumab monotherapy in an international retrospective study including 19 adult patients with heavily pretreated refractory AIHA. In warm AIHA (wAIHA, n = 12), overall response was 50% with a median response duration of 5.5 months (range, 2-12), including ongoing response in 2 patients after 6 and 12 months. Of 6 nonresponders, 4 had Evans syndrome. In cold AIHA (cAIHA, n = 7) overall hemoglobin (Hb) response was 57%, with ongoing response in 3 of 7 patients. One additional patient with nonanemic cAIHA was treated for severe acrocyanosis and reached a clinical acrocyanosis response as well as a Hb increase. Of 6 patients with cAIHA with acrocyanosis, 4 had improved symptoms after daratumumab treatment. In 2 patients with wAIHA treated with daratumumab, in whom we prospectively collected blood samples, we found complete CD38+ T-cell depletion after daratumumab, as well as altered T-cell subset differentiation and a severely diminished capacity for cell activation and proliferation. Reappearance of CD38+ T cells coincided with disease relapse in 1 patient. In conclusion, our data show that daratumumab therapy may be a treatment option for refractory AIHA. The observed immunomodulatory effects that may contribute to the clinical response deserve further exploration.</p

    Timed sequential chemotherapy with concomitant Granulocyte Colony-Stimulating Factor for high-risk acute myelogenous leukemia: a single arm clinical trial

    Get PDF
    BACKGROUND: The timed-sequential chemotherapy regimen consisting of etoposide, mitoxantrone and cytarabine (EMA) is an effective therapy for relapsed or refractory acute myelogenous leukemia (AML). We postulated that granulocyte colony-stimulating factor (G-CSF) might enhance the cytotoxicity of EMA by increasing the proportion of leukemic blasts in S-phase. We added G-CSF to EMA (EMA-G) for therapy of advanced high-risk AML patients. METHODS: High-risk AML was defined as refractory, relapsed or secondary to either an antecedent hematologic disorder or exposure to cytotoxic agents. The patients were treated with one course of EMA-G consisting of mitoxantrone and cytarabine on days 1–3, and etoposide and cytarabine on days 8–10. G-CSF was started on day 4 and continued until absolute neutrophil count recovered. RESULTS: Thirty patients were enrolled. The median age was 51 years (range, 25–75). Seventeen (61%) patients had unfavorable cytogenetic karyotypes. Twenty (69%) patients had secondary AML. Ten (34%) had relapsed disease. Four (14%) had refractory AML. Three (10%) patients died from febrile neutropenia and sepsis. Major non-hematologic toxicity included hyperbilirubimenia, renal insufficiency, mucositis, diarrhea, nausea and vomiting, skin rash. A complete remission was achieved in 13 (46%) patients. Median overall survival was 9 months (range, 0.5–66). Median relapse-free survival (RFS) for those who had a CR was 3 months (range, 0.5–63) with RFS censored at the time of allogeneic bone marrow transplantation or peripheral stem cell transplantation for 6 of the patients. CONCLUSIONS: EMA-G is a safe and efficacious option for induction chemotherapy in advanced, high-risk AML patients. The activity of EMA may be increased if applied in patients with less advanced disease

    Local Orientation and the Evolution of Foraging: Changes in Decision Making Can Eliminate Evolutionary Trade-offs

    Get PDF
    Information processing is a major aspect of the evolution of animal behavior. In foraging, responsiveness to local feeding opportunities can generate patterns of behavior which reflect or “recognize patterns” in the environment beyond the perception of individuals. Theory on the evolution of behavior generally neglects such opportunity-based adaptation. Using a spatial individual-based model we study the role of opportunity-based adaptation in the evolution of foraging, and how it depends on local decision making. We compare two model variants which differ in the individual decision making that can evolve (restricted and extended model), and study the evolution of simple foraging behavior in environments where food is distributed either uniformly or in patches. We find that opportunity-based adaptation and the pattern recognition it generates, plays an important role in foraging success, particularly in patchy environments where one of the main challenges is “staying in patches”. In the restricted model this is achieved by genetic adaptation of move and search behavior, in light of a trade-off on within- and between-patch behavior. In the extended model this trade-off does not arise because decision making capabilities allow for differentiated behavioral patterns. As a consequence, it becomes possible for properties of movement to be specialized for detection of patches with more food, a larger scale information processing not present in the restricted model. Our results show that changes in decision making abilities can alter what kinds of pattern recognition are possible, eliminate an evolutionary trade-off and change the adaptive landscape

    Avoiding the uncanny valley : robot appearance, personality and consistency of behavior in an attention-seeking home scenario for a robot companion

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10514-007-9058-3This article presents the results of video-based Human Robot Interaction (HRI) trials which investigated people’s perceptions of different robot appearances and associated attention-seeking features and behaviors displayed by robots with different appearance and behaviors. The HRI trials studied the participants’ preferences for various features of robot appearance and behavior, as well as their personality attributions towards the robots compared to their own personalities. Overall, participants tended to prefer robots with more human-like appearance and attributes. However, systematic individual differences in the dynamic appearance ratings are not consistent with a universal effect. Introverts and participants with lower emotional stability tended to prefer the mechanical looking appearance to a greater degree than other participants. It is also shown that it is possible to rate individual elements of a particular robot’s behavior and then assess the contribution, or otherwise, of that element to the overall perception of the robot by people. Relating participants’ dynamic appearance ratings of individual robots to independent static appearance ratings provided evidence that could be taken to support a portion of the left hand side of Mori’s theoretically proposed ‘uncanny valley’ diagram. Suggestions for future work are outlined.Peer reviewe
    corecore