497 research outputs found

    Non-Gaussian statistics of electrostatic fluctuations of hydration shells

    Full text link
    We report the statistics of electric field fluctuations produced by SPC/E water inside a Kihara solute given as a hard-sphere core with a Lennard-Jones layer at its surface. The statistics of electric field fluctuations, obtained from numerical simulations, are studied as a function of the magnitude of a point dipole placed close to the solute-water interface. The free energy surface as a function of the electric field projected on the dipole direction shows a cross-over with the increasing dipole magnitude. While it is a single-well harmonic function at low dipole values, it becomes a double-well surface at intermediate dipole moment magnitudes, transforming to a single-well surface, with a non-zero minimum position, at still higher dipoles. A broad intermediate region where the interfacial waters fluctuate between the two minima is characterized by intense field fluctuations, with non-Gaussian statistics and the variance far exceeding the linear-response expectations. The excited state of the surface water is found to be lifted above the ground state by the energy required to break approximately two hydrogen bonds. This state is pulled down in energy by the external electric field of the solute dipole, making it readily accessible to thermal excitations. The excited state is a localized surface defect in the hydrogen-bond network creating a stress in the nearby network, but otherwise relatively localized in the region closest to the solute dipole

    The polymer phase of the TDAE-C60_{60} organic ferromagnet

    Get PDF
    The high-pressure Electron Spin Resonance (ESR) measurements were preformed on TDAE-C60_{60} single crystals and stability of the polymeric phase was established in the PTP - T parameter space. At 7 kbar the system undergoes a ferromagnetic to paramagnetic phase transition due to the pressure-induced polymerization. The polymeric phase remains stable after the pressure release. The depolymerization of the pressure-induced phase was observed at the temperature of 520 K. Below room temperature, the polymeric phase behaves as a simple Curie-type insulator with one unpaired electron spin per chemical formula. The TDAE+^+ donor-related unpaired electron spins, formerly ESR-silent, become active above the temperature of 320 K and the Curie-Weiss behavior is re-established.Comment: Submitted to Phys. Rev.

    X-Ray Diffuse Scattering Study on Ionic-Pair Displacement Correlations in Relaxor Lead Magnesium Niobate

    Full text link
    Ionic-pair equal-time displacement correlations in relaxor lead magnesium niobate, Pb(Mg1/3Nb2/3)O3Pb(Mg_{1/3}Nb_{2/3})O_{3}, have been investigated at room temperature in terms of an x-ray diffuse scattering technique. Functions of the distinct correlations have been determined quantitatively. The results show the significantly strong rhombohedral-polar correlations regarding Pb-O, Mg/Nb-O, and O-O' pairs. Their spatial distribution forms an ellipse or a sphere with the radii of 30-80A˚\AA. This observation of local structure in the system proves precursory presence of the polar microregions in the paraelectric state which leads to the dielectric dispersion.Comment: 11 pages, 3 figure

    Inversion symmetry breaking in noncollinear magnetic phase of a triangular lattice antiferromagnet CuFeO2

    Full text link
    Magnetoelectric and magnetoelastic phenomena correlated with a phase transition into noncollinear magnetic phase have been investigated for single crystals of CuFeO2 with a frustrated triangular lattice. CuFeO2 exhibits several long-wavelength magnetic structures related to the spin frustration, and it is found that finite electric polarization, namely inversion symmetry breaking, occurs with noncollinear but not at collinear magnetic phases. This result demonstrates that the noncollinear spin structure is a key role to induce electric polarization, and suggests that frustrated magnets which often favor noncollinear configurations can be plausible candidates for magnetoelectrics with strong magnetoelectric interaction.Comment: 15 page

    Spin-lattice coupling in multiferroic Pb(Fe1/2Nb1/2)O3 thin films

    Full text link
    We have made magnetization and x-ray diffraction measurements on an epitaxial Pb(Fe1/2Nb1/2)O3 200 nm film. From the temperature dependence of the out-of-plane lattice parameter we can assign a Burns' temperature at Td ~ 640 K, a temperature at T* ~ 510 K, related to the appearance of static polar nanoregions, and an anomaly occurring at 200 K. The latter is precisely the N\'eel temperature TN determined from magnetization and points to spin-lattice coupling at TN ~ 200 K. We also observe "weak ferromagnetism" up to 300K and propose superantiferromagnetic clusters as a plausible scenario to explain this hysteresis above TN.Comment: 12 pages, 4 figure

    Application of elastostatic Green function tensor technique to electrostriction in cubic, hexagonal and orthorhombic crystals

    Full text link
    The elastostatic Green function tensor approach, which was recently used to treat electrostriction in numerical simulation of domain structure formation in cubic ferroelectrics, is reviewed and extended to the crystals of hexagonal and orthorhombic symmetry. The tensorial kernels appearing in the expressions for effective nonlocal interaction of electrostrictive origin are derived explicitly and their physical meaning is illustrated on simple examples. It is argued that the bilinear coupling between the polarization gradients and elastic strain should be systematically included in the Ginzburg-Landau free energy expansion of electrostrictive materials.Comment: 4 page

    Monte Carlo Study of Relaxor Systems: A Minimum Model for Pb(In1/2_{1/2}Nb1/2_{1/2})O3_3}

    Full text link
    We examine a simple model for Pb(In1/2_{1/2}Nb1/2_{1/2})O3_3 (PIN), which includes both long-range dipole-dipole interaction and random local anisotropy. A improved algorithm optimized for long-range interaction has been applied for efficient large-scale Monte Carlo simulation. We demonstrate that the phase diagram of PIN is qualitatively reproduced by this minimum model. Some properties characteristic of relaxors such as nano-scale domain formation, slow dynamics and dispersive dielectric responses are also examined.Comment: 5 pages, 4 figure

    NMR imaging of the soliton lattice profile in the spin-Peierls compound CuGeO_3

    Full text link
    In the spin-Peierls compound CuGeO3_{3}, the commensurate-incommensurate transition concerning the modulation of atomic position and the local spin-polarization is fully monitored at T=0 by the application of an external magnetic field (HH) above a threshold value HcH_{c}\simeq 13 Tesla. The solitonic profile of the spin-polarization, as well as its absolute magnitude, has been precisely imaged from 65Cu^{65}Cu NMR lineshapes obtained for h=(HHc)/Hch=(H-H_{c})/H_{c} varying from 0.0015 to 2. This offers a unique possibility to test quantitatively the various numerical and analytical methods developed to solve a generic Hamiltonian in 1-D physics, namely strongly interacting fermions in presence of electron-phonon coupling at arbitrary band filling.Comment: 3 pages, 4 eps figures, RevTeX, submitted to Physical Review Lette

    Effects of interatomic interaction on cooperative relaxation of two-level atoms

    Get PDF
    We study effects of direct interatomic interaction on cooperative processes in atom-photon dynamics. Using a model of two-level atoms with Ising-type interaction as an example, it is demonstrated that interparticle interaction combined with atom-field coupling can introduce additional interatomic correlations acting as a phase synchronizing factor. For the case of weakly interacting atoms with J<ω0J<\hbar\omega_0, where JJ is the interparticle coupling constant and ω0\omega_0 is the atomic frequency, dynamical regimes of cooperative relaxation of atoms are analyzed in Born-Markov approximation both numerically and using the mean field approximation. We show that interparticle correlations induced by the direct interaction result in inhibition of incoherent spontaneous decay leading to the regime of collective pulse relaxation which differs from superradiance in nature. For superradiant transition, the synchronizing effect of interatomic interaction is found to manifest itself in enhancement of superradiance. When the interaction is strong and J>ω0J>\hbar\omega_0, one-partice one-photon transitions are excluded and transition to the regime of multiphoton relaxation occurs. Using a simple model of two atoms in a high-Q single mode cavity we show that such transition is accompanied by Rabi oscillations involving many-atom multiphoton states. Dephasing effect of dipole-dipole interaction and solitonic mechanism of relaxation are discussed.Comment: 34 pages, 8 figure
    corecore