54 research outputs found

    Cardiovascular effects of dietary salt intake in aged healthy cats: a 2-year prospective randomized, blinded, and controlled study

    Get PDF
    High salt dry expanded diets are commercially available for cats to increase water intake and urine volume, as part of the prevention or treatment of naturally occurring urinary stone formation (calcium oxalates and struvites). However, chronic high salt intake may have potential cardiovascular adverse effects in both humans, especially in aging individuals, and several animal models. The objective of this prospective, randomized, blinded, and controlled study was to assess the long-term cardiovascular effects of high salt intake in healthy aged cats. Twenty healthy neutered cats (10.1±2.4 years) were randomly allocated into 2 matched groups. One group was fed a high salt diet (3.1 g/Mcal sodium, 5.5 g/Mcal chloride) and the other group a control diet of same composition except for salt content (1.0 g/Mcal sodium, 2.2 g/Mcal chloride). Clinical examination, systolic and diastolic arterial blood pressure measurements, standard transthoracic echocardiography and conventional Doppler examinations were repeatedly performed on non-sedated cats by trained observers before and over 24 months after diet implementation. Radial and longitudinal velocities of the left ventricular free wall and the interventricular septum were also assessed in systole and diastole using 2-dimensional color tissue Doppler imaging. Statistics were performed using a general linear model. No significant effect of dietary salt intake was observed on systolic and diastolic arterial blood pressure values. Out of the 33 tested imaging variables, the only one affected by dietary salt intake was the radial early on late diastolic velocity ratio assessed in the endocardium of the left ventricular free wall, statistically lower in the high salt diet group at 12 months only (P = 0.044). In conclusion, in this study involving healthy aged cats, chronic high dietary salt intake was not associated with an increased risk of systemic arterial hypertension and myocardial dysfunction, as observed in some elderly people, salt-sensitive patients and animal models

    Quality of life is reduced in obese dogs but improves after successful weight loss

    Get PDF
    Obesity is thought to affect quality of life, but limited objective data exist to support this supposition. The current study aim was to use a questionnaire to determine health-related quality of life (HRQOL) both before and after weight loss, in obese client-owned dogs. Fifty obese dogs were included, and represented a variety of breeds and genders. Prior to weight loss, owners were asked to complete a validated standardised questionnaire to determine HRQOL. Thirty of the dogs successfully completed their weight loss programme and reached target, and owners then completed a follow-up questionnaire. The completed questionnaire responses were transformed to scores corresponding to each of four factors (vitality, emotional disturbance, anxiety and pain), and scored on a scale of 0–6. Changes in the scores were used to explore the sensitivity of the questionnaire, and scores were correlated with responses to direct questions about quality of life and pain, as well as weight loss.Dogs that failed to complete their weight loss programme had lower vitality and higher emotional disturbance scores than those successfully losing weight (P = 0.03 for both). In the 30 dogs that completed, weight loss led to an increased vitality score (P < 0.001), and decreased scores for both emotional disturbance (P < 0.001) and pain (P < 0.001). However, there was no change in anxiety (P = 0.09). The change in vitality score was positively associated with percentage weight loss (rP = 0.43, P = 0.02) and percentage body fat loss (rP = 0.39, P = 0.03). These results indicate demonstrable improvement in HRQOL for obese dogs that successfully lose weigh

    Fleming's penicillin producing streain is not Penicillium chrysogenum but P. rubens

    Get PDF
    Penicillium chrysogenum is a commonly occurring mould in indoor environments and foods, and has gained much attention for its use in the production of the antibiotic penicillin. Phylogenetic analysis of the most important penicillin producing P. chrysogenum isolates revealed the presence of two highly supported clades, and we show here that these two clades represent two species, P. chrysogenum and P. rubens. These species are phenotypically similar, but extrolite analysis shows that P. chrysogenum produces secalonic acid D and F and/or a metabolite related to lumpidin, while P. rubens does not produce these metabolites. Fleming’s original penicillin producing strain and the full genome sequenced strain of P. chrysogenum are re-identified as P. rubens. Furthermore, the well-known claim that Alexander Fleming misidentified the original penicillin producing strain as P. rubrum is discussed

    Digestive sensitivity varies according to size of dogs: a review

    No full text
    International audienc
    • …
    corecore