1,494 research outputs found

    Population size, habitat and conservation status of an Endangered species, Macrozamia johnsonii (Zamiaceae)

    Get PDF
    Macrozamia johnsonii D. Jones & K. Hill is a locally endemic cycad (family Zamiaceae) with a restricted occurrence in north-eastern New South Wales and currently listed as Endangered. Based on recent field surveys, its mean population size is estimated as approximately 3.5 million mature plants, with the lower bound of the 95% confidence interval at 1.9 million mature plants. Thirty percent of the population occurs in a formal reserve. Macrozamia johnsonii occurs in grassy eucalypt forest, shrubby wet sclerophyll forest and in rainforest. It occurs most frequently on steeply sloping sites with high moisture index. There are no immediate significant threats to the species although timber harvesting is judged to be a potential longer term threat to part of the population. The conservation status of Macrozamia johnsonii is assessed using IUCN criteria and thresholds, using population size and extent data from this study and a plausible range of values based on available circumstantial evidence for parameters for which quantitative estimates are not available. Based on this assessment, we regard the conservation status of Macrozamia johnsonii to be in the category of Least Concern, and that its current listing as an Endangered species under the NSW Threatened Species Conservation Act (1995) needs to be revised

    Switching Casimir forces with Phase Change Materials

    Get PDF
    We demonstrate here a controllable variation in the Casimir force. Changes in the force of up to 20% at separations of ~100 nm between Au and AgInSbTe (AIST) surfaces were achieved upon crystallization of an amorphous sample of AIST. This material is well known for its structural transformation, which produces a significant change in the optical properties and is exploited in optical data storage systems. The finding paves the way to the control of forces in nanosystems, such as micro- or nanoswitches by stimulating the phase change transition via localized heat sources.Comment: 7 pages, 3 figures The AFM images for the inset in Fig.2 were replaced with new ones as obtained with tips having high aspect rati

    Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA – first small animal PET results

    Get PDF
    PURPOSE: This study was performed to compare the 2-nitroimidazole derivatives [124I]IAZA, [18F]FAZA and well known [18F]FMISO in visualization of tumor hypoxia in a mouse model of human cancer using small animal PET. METHODS: PET imaging of female Balb/c nude mice bearing A431 tumors on a Phillips Mosaic small animal PET scanner was performed 3 h p.i. for all three tracers. Mice injected with [124I]IAZA were scanned again after 24 h and 48 h. In addition to the mice breathing air, in the case of [18F]FAZA and [124I]IAZA a second group of mice for each tracer was kept in an atmosphere of carbogen gas (5% of CO2 + 95 % of O2; from 1 h before to 3 h after injection) to evaluate the oxygenation dependency on uptake (all experiments n = 4). After the final PET scan animals were sacrificed and biodistribution was studied. RESULTS: Mice injected with [18F]FAZA displayed significantly higher tumor-to background (T/B) ratios (5.19 +/- 0.73) compared to those injected with [18F]FMISO (3.98 +/- 0.66; P lt;0.05)or[124I]IAZA(2.06+/−0.26;Plt; 0.05) or [124I]IAZA (2.06 +/- 0.26; P lt; 0.001) 3 h p.i. Carbogen breathing mice showed lower ratios ([18F]FAZA: 4.06 +/- 0.59; [124I]IAZA: 2.02 +/- 0.36). The T/B ratios increased for [124I]IAZA with time (24 h: 3.83 +/- 0.61; 48 h: 4.20 +/- 0.80), but after these late time points the absolute whole body activity was very low, as could be seen from the biodistribution data (< 0.1 %ID/g for each investigated organ) and ratios were still lower than for [18F]FAZA 3 h p.i. Due to de-iodination uptake in thyroid was high. Biodistribution data were in good agreement with the PET results. CONCLUSIONS: [18F]FAZA showed superior biokinetics compared to [18F]FMISO and [124I]IAZA in this study. Imaging at later time points that are not possible with the short lived 18F labeled tracers resulted in no advantage for [124I]IAZA, i. e. tumor to normal tissue ratios could not be improved. © 1999 Canadian Society for Pharmaceutical Sciences

    On the Low Energy Decrease in Galactic Cosmic Ray Secondary/Primary Ratios

    Get PDF
    Galactic cosmic ray (GCR) secondary/primary ratios such as B/C and (Sc+Ti+V)/Fe are commonly used to determine the mean amount of interstellar material through which cosmic rays travel before escaping from the Galaxy (Λ_(esc)). These ratios are observed to be energy-dependent, with a relative maximum at ~1 GeV/nucleon, implying a corresponding peak in Λ_(esc). The decrease in Λ_(esc) at energies above 1 GeV/nucleon is commonly taken to indicate that higher energy cosmic rays escape more easily from the Galaxy. The decrease in Λ_(esc) at energies <1 GeV/nuc is more controversial; suggested possibilities include the effects of a galactic wind or the effects of distributed acceleration of cosmic rays as they pass through the interstellar medium. We consider two possible explanations for the low energy decrease in Λ_(esc) and attempt to fit the combined, high-resolution measurements of secondary/primary ratios from ~0.1 to 35 GeV/nuc made with the CRIS instrument on ACE and the C2 experiment on HEAO-3. The first possibility, which hypothesizes an additional, local component of low-energy cosmic rays that has passed through very little material, is found to have difficulty simultaneously accounting for the abundance of both B and the Fe-secondaries. The second possibility, suggested by Soutoul and Ptuskin, involves a new form for Λ_(esc) motivated by their diffusion-convection model of cosmic rays in the Galaxy. Their suggested form for Λ_(esc)(E) is found to provide an excellent fit to the combined ACE and HEAO data sets

    The Phosphorus/Sulfur Abundance Ratio as a Test of Galactic Cosmic-Ray Source Models

    Get PDF
    Galactic cosmic-ray (GCR) elemental abundances display a fractionation compared to solar-system values that appears ordered by atomic properties such as the first ionization potential (FIP) or condensation temperature (volatility). Determining which parameter controls the observed fractionation is crucial to distinguish between GCR origin models. The Cosmic-Ray Isotope Spectrometer (CRIS) instrument on board NASA's Advanced Composition Explorer (ACE) spacecraft can measure the abundances of several elements that break the general correlation between FIP and volatility (e.g., Na, P, K, Cu, Zn, Ga, and Ge). Phosphorus is a particularly interesting case as it is a refractory (high condensation temperature) element with a FIP value nearly identical to that of its semi-volatile neighbor, sulfur. Using a leaky-box galactic propagation model we find that the P/S and Na/Mg ratios in the GCR source favor volatility as the controlling parameter

    Anisotropy of Galactic Iron of Energy 30 to 500 GeV/amu Studied by HEAO-3

    Get PDF
    The anisotropy of cosmic ray iron observed by the Heavy Nuclei Experiment [1] on the HEA0-3 spacecraft has been studied. A high rigidity data set was chosen by requiring the Stoermer cutoff be greater than 7 GV, and the energy of individual events was determined by relativistic rise in the ion chamber signal [2]. Events which have estimated rigidity well above their Stoermer cutoff rigidity were chosen in order to reduce the effect of the geomagnetic field on the cosmic ray trajectories. Selecting events with estimated rigidity greater than ~58 GV from eight months of data yields 2459 events. This data set allows an anisotropy measurement with a statistical uncertainty of 3%. We will continue to try increasing the size. of the selected data set while limiting systematic errors due to the geomagnetic and interplanetary fields

    Applications of Abundance Data and Requirements for Cosmochemical Modeling

    Get PDF
    Understanding the evolution of the universe from Big Bang to its present state requires an understanding of the evolution of the abundances of the elements and isotopes in galaxies, stars, the interstellar medium, the Sun and the heliosphere, planets and meteorites. Processes that change the state of the universe include Big Bang nucleosynthesis, star formation and stellar nucleosynthesis, galactic chemical evolution, propagation of cosmic rays, spallation, ionization and particle transport of interstellar material, formation of the solar system, solar wind emission and its fractionation (FIP/FIT effect), mixing processes in stellar interiors, condensation of material and subsequent geochemical fractionation. Here, we attempt to compile some major issues in cosmochemistry that can be addressed with a better knowledge of the respective element or isotope abundances. Present and future missions such as Genesis, Stardust, Interstellar Pathfinder, and Interstellar Probe, improvements of remote sensing instrumentation and experiments on extraterrestrial material such as meteorites, presolar grains, and lunar or returned planetary or cometary samples will result in an improved database of elemental and isotopic abundances. This includes the primordial abundances of D, ^3He, ^4He, and ^7Li, abundances of the heavier elements in stars and galaxies, the composition of the interstellar medium, solar wind and comets as well as the (highly) volatile elements in the solar system such as helium, nitrogen, oxygen or xenon
    • …
    corecore