Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA – first small animal PET results

Abstract

PURPOSE: This study was performed to compare the 2-nitroimidazole derivatives [124I]IAZA, [18F]FAZA and well known [18F]FMISO in visualization of tumor hypoxia in a mouse model of human cancer using small animal PET. METHODS: PET imaging of female Balb/c nude mice bearing A431 tumors on a Phillips Mosaic small animal PET scanner was performed 3 h p.i. for all three tracers. Mice injected with [124I]IAZA were scanned again after 24 h and 48 h. In addition to the mice breathing air, in the case of [18F]FAZA and [124I]IAZA a second group of mice for each tracer was kept in an atmosphere of carbogen gas (5% of CO2 + 95 % of O2; from 1 h before to 3 h after injection) to evaluate the oxygenation dependency on uptake (all experiments n = 4). After the final PET scan animals were sacrificed and biodistribution was studied. RESULTS: Mice injected with [18F]FAZA displayed significantly higher tumor-to background (T/B) ratios (5.19 +/- 0.73) compared to those injected with [18F]FMISO (3.98 +/- 0.66; P lt;0.05)or[124I]IAZA(2.06+/0.26;Plt; 0.05) or [124I]IAZA (2.06 +/- 0.26; P lt; 0.001) 3 h p.i. Carbogen breathing mice showed lower ratios ([18F]FAZA: 4.06 +/- 0.59; [124I]IAZA: 2.02 +/- 0.36). The T/B ratios increased for [124I]IAZA with time (24 h: 3.83 +/- 0.61; 48 h: 4.20 +/- 0.80), but after these late time points the absolute whole body activity was very low, as could be seen from the biodistribution data (< 0.1 %ID/g for each investigated organ) and ratios were still lower than for [18F]FAZA 3 h p.i. Due to de-iodination uptake in thyroid was high. Biodistribution data were in good agreement with the PET results. CONCLUSIONS: [18F]FAZA showed superior biokinetics compared to [18F]FMISO and [124I]IAZA in this study. Imaging at later time points that are not possible with the short lived 18F labeled tracers resulted in no advantage for [124I]IAZA, i. e. tumor to normal tissue ratios could not be improved. © 1999 Canadian Society for Pharmaceutical Sciences

    Similar works