22 research outputs found
Acceleration and Deceleration in Curvature Induced Phantom Model of the Late and Future Universe, Cosmic Collapse as Well as its Quantum Escape
Here, cosmology of the late and future universe is obtained from
-gravity with non-linear curvature terms and ( being the
Ricci scalar curvature). It is different from -dark enrgy models, where
non-linear curvature terms are taken as gravitational alternative of dark
energy. In the present model, neither linear nor no-linear curvature terms are
taken as dark energy. Rather, dark energy terms are induced by curvature terms
in the Friedmann equation derived from -gravitational equations. It has
advantage over - dark energy models in the sense that the present model
satisfies WMAP results and expands as during matter-dominance.
So, it does not have problems due to which -dark energy models are
criticized. Curvature-induced dark energy, obtained here, mimics phantom.
Different phases of this model, including acceleration and deceleration during
phantom phase, are investigated here.It is found that expansion of the universe
will stop at the age ( being the present
age of the universe) and after this epoch, it will contract and collapse by the
time . Further,it is shown that universe will
escape predicted collapse (obtained using classical mechanics) on making
quantum gravity corrections relevant near collapse time due to extremely high
energy density and large curvature analogous to the state of very early
universe. Interestingly, cosmological constant is also induced here, which is
very small in classical domain, but very high in quantum domain.Comment: 33 page
Reionization Constraints on the Contribution of Primordial Compact Objects to Dark Matter
Many lines of evidence suggest that nonbaryonic dark matter constitutes
roughly 30% of the critical closure density, but the composition of this dark
matter is unknown. One class of candidates for the dark matter is compact
objects formed in the early universe, with typical masses M between 0.1 and 1
solar masses to correspond to the mass scale of objects found with microlensing
observing projects. Specific candidates of this type include black holes formed
at the epoch of the QCD phase transition, quark stars, and boson stars. Here we
show that accretion onto these objects produces substantial ionization in the
early universe, with an optical depth to Thomson scattering out to z=1100 of
approximately tau=2-4 [f_CO\epsilon_{-1}(M/Msun)]^{1/2} (H_0/65)^{-1}, where
\epsilon_{-1} is the accretion efficiency \epsilon\equiv L/{\dot M}c^2 divided
by 0.1 and f_CO is the fraction of matter in the compact objects. The current
upper limit to the scattering optical depth, based on the anisotropy of the
microwave background, is approximately 0.4. Therefore, if accretion onto these
objects is relatively efficient, they cannot be the main component of
nonbaryonic dark matter.Comment: 12 pages including one figure, uses aaspp4, submitted to Ap
Probing Early Structure Formation with Far-Infrared Background Correlations
The large-scale structure of high-redshift galaxies produces correlated
anisotropy in the far-infrared background (FIRB). In regions of the sky where
the thermal emission from Galactic dust is well below average, these
high-redshift correlations may be the most significant source of angular
fluctuation power over a wide range of angular scales, from about 7' to about 3
degrees, and frequencies, from about 400 to about 1000 GHz. The strength of
this signal should allow detailed studies of the statistics of the FIRB
fluctuations, including the shape of the angular power spectrum at a given
frequency and the degree of coherence between FIRB maps at different
frequencies. The FIRB correlations depend upon and hence constrain the
redshift-dependent spectral energy distributions, number counts, and clustering
bias of the galaxies and active nuclei that contribute to the background. We
quantify the accuracy to which Planck and a newly proposed balloon-borne
mission EDGE could constrain models of the high-redshift universe through the
measurement of FIRB fluctuations. We conclude that the average bias of
high-redshift galaxies could be measured to an accuracy of less than
approximately 1% or, for example, separated into 4 redshift bins with about 10%
accuracy.Comment: 15 emulateapj pages, including 9 figures, submitted to Ap
Quantum driven Bounce of the future Universe
It is demonstrated that due to back-reaction of quantum effects, expansion of
the universe stops at its maximum and takes a turnaround. Later on, it
contracts to a very small size in finite future time. This phenomenon is
followed by a " bounce" with re-birth of an exponentially expanding
non-singular universe
Curvature Inspired Cosmological Scenario
Using modified gravity with non-linear terms of curvature, and (with being the positive real number and being the scalar
curvature), cosmological scenario,beginning at the Planck scale, is obtained.
Here, a unified picture of cosmology is obtained from gravity. In this
scenario, universe begins with power-law inflation, followed by deceleration
and acceleration in the late universe as well as possible collapse of the
universe in future. It is different from dark energy models with
non-linear curvature terms assumed as dark energy. Here, dark energy terms are
induced by linear as well as non-linear terms of curvature in Friedmann
equation being derived from modified gravity.It is also interesting to see
that, in this model, dark radiation and dark matter terms emerge spontaneously
from the gravitational sector. It is found that dark energy, obtained here,
behaves as quintessence in the early universe and phantom in the late universe.
Moreover, analogous to brane-tension in brane-gravity inspired Friedmann
equation, a tension term arises here being called as cosmic tension.
It is found that, in the late universe, Friedmann equation (obtained here)
contains a term ( being the phantom energy density)
analogous to a similar term in Friedmann equation with loop quantum effects, if
and brane-gravity correction when Comment: 19 Pages. To appear in Int. J. Thro. Phy
A new standard model of the universe
Analytical properties of a flat universe with cold matter and vacuum energy
is presented.Comment: 10 pages, 11 figure
Can inflationary models of cosmic perturbations evade the secondary oscillation test?
We consider the consequences of an observed Cosmic Microwave Background (CMB)
temperature anisotropy spectrum containing no secondary oscillations. While
such a spectrum is generally considered to be a robust signature of active
structure formation, we show that such a spectrum {\em can} be produced by
(very unusual) inflationary models or other passive evolution models. However,
we show that for all these passive models the characteristic oscillations would
show up in other observable spectra. Our work shows that when CMB polarization
and matter power spectra are taken into account secondary oscillations are
indeed a signature of even these very exotic passive models. We construct a
measure of the observability of secondary oscillations in a given experiment,
and show that even with foregrounds both the MAP and \pk satellites should be
able to distinguish between models with and without oscillations. Thus we
conclude that inflationary and other passive models can {\em not} evade the
secondary oscillation test.Comment: Final version accepted for publication in PRD. Minor improvements
have been made to the discussion and new data has been included. The
conclusions are unchagne
Slepton and Neutralino/Chargino Coannihilations in MSSM
Within the low-energy effective Minimal Supersymmetric extension of Standard
Model (effMSSM) we calculated the neutralino relic density taking into account
slepton-neutralino and neutralino-chargino/neutralino coannihilation channels.
We performed comparative study of these channels and obtained that both of them
give sizable contributions to the reduction of the relic density. Due to these
coannihilation processes some models (mostly with large neutralino masses)
enter into the cosmologically interesting region for relic density, but other
models leave this region. Nevertheless, in general, the predictions for direct
and indirect dark matter detection rates are not strongly affected by these
coannihilation channels in the effMSSM.Comment: 12 pages, 9 figures, revte
Inflationary perturbations from a potential with a step
We use a numerical code to compute the density perturbations generated during
an inflationary epoch which includes a spontaneous symmetry breaking phase
transition. A sharp step in the inflaton potential generates dependent
oscillations in the spectrum of primordial density perturbations. The amplitude
and extent in wavenumber of these oscillations depends on both the magnitude
and gradient of the step in the inflaton potential. We show that observations
of the cosmic microwave background anisotropy place strong constraints on the
step parameters.Comment: 6 pages, Revtex - v2. reference adde
Bounds on the possible evolution of the Gravitational Constant from Cosmological Type-Ia Supernovae
Recent high-redshift Type Ia supernovae results can be used to set new bounds
on a possible variation of the gravitational constant . If the local value
of at the space-time location of distant supernovae is different, it would
change both the kinetic energy release and the amount of Ni synthesized
in the supernova outburst. Both effects are related to a change in the
Chandrasekhar mass . In addition, the integrated
variation of with time would also affect the cosmic evolution and therefore
the luminosity distance relation. We show that the later effect in the
magnitudes of Type Ia supernovae is typically several times smaller than the
change produced by the corresponding variation of the Chandrasekhar mass. We
investigate in a consistent way how a varying could modify the Hubble
diagram of Type Ia supernovae and how these results can be used to set upper
bounds to a hypothetical variation of . We find G/G_0 \la 1.1 and G'/G
\la 10^{-11} yr^{-1} at redshifts . These new bounds extend the
currently available constrains on the evolution of all the way from solar
and stellar distances to typical scales of Gpc/Gyr, i.e. by more than 15 orders
of magnitudes in time and distance.Comment: 9 pages, 4 figures, Phys. Rev. D. in pres