18,185 research outputs found
Transport of overdamped Brownian particles in a two-dimensional tube: Nonadiabatic regime
Transport of overdamped Brownian particles in a two-dimensional asymmetric
tube is investigated in the presence of nonadiabatic periodic driving forces.
By using Brownian dynamics simulations we can find that the phenomena in
nonadiabatic regime differ from that in adiabatic case. The direction of the
current can be reversed by tuning the driving frequency. Remarkably, the
current as a function of the driving amplitude exhibits several local maxima at
finite driving frequency.Comment: 10 pages, 4 figure
The Third Law of Quantum Thermodynamics in the Presence of Anomalous Couplings
The quantum thermodynamic functions of a harmonic oscillator coupled to a
heat bath through velocity-dependent coupling are obtained analytically. It is
shown that both the free energy and the entropy decay fast with the temperature
in relation to that of the usual coupling from. This implies that the
velocity-dependent coupling helps to ensure the third law of thermodynamics.Comment: 4 pages, 3 figures, 22 conference
Tree-level Split Helicity Amplitudes in Ambitwistor Space
We study all tree-level split helicity gluon amplitudes by using the recently
proposed BCFW recursion relation and Hodges diagrams in ambitwistor space. We
pick out the contributing diagrams and find that all of them can be divided
into triangles in a suitable way. We give the explicit expressions for all of
these amplitudes. As an example, we reproduce the six gluon split NMHV
amplitudes in momentum space.Comment: 20 pages, 16 figures; minor changes; clarifications added, 22 pages,
16 figure
Categorification of quantum symmetric pairs I
We categorify a coideal subalgebra of the quantum group of
by introducing a -category \`a la
Khovanov-Lauda-Rouquier, and show that self-dual indecomposable -morphisms
categorify the canonical basis of this algebra. This allows us to define a
categorical action of this coideal algebra on the categories of modules over
cohomology rings of partial flag varieties and on the BGG category
of type B/C.Comment: final version, to appear in Quantum Topolog
Radio Frequency Interference Mitigation
Radio astronomy observational facilities are under constant upgradation and
development to achieve better capabilities including increasing the time and
frequency resolutions of the recorded data, and increasing the receiving and
recording bandwidth. As only a limited spectrum resource has been allocated to
radio astronomy by the International Telecommunication Union, this results in
the radio observational instrumentation being inevitably exposed to undesirable
radio frequency interference (RFI) signals which originate mainly from
terrestrial human activity and are becoming stronger with time. RFIs degrade
the quality of astronomical data and even lead to data loss. The impact of RFIs
on scientific outcome is becoming progressively difficult to manage. In this
article, we motivate the requirement for RFI mitigation, and review the RFI
characteristics, mitigation techniques and strategies. Mitigation strategies
adopted at some representative observatories, telescopes and arrays are also
introduced. We also discuss and present advantages and shortcomings of the four
classes of RFI mitigation strategies, applicable at the connected causal
stages: preventive, pre-detection, pre-correlation and post-correlation. The
proper identification and flagging of RFI is key to the reduction of data loss
and improvement in data quality, and is also the ultimate goal of developing
RFI mitigation techniques. This can be achieved through a strategy involving a
combination of the discussed techniques in stages. Recent advances in high
speed digital signal processing and high performance computing allow for
performing RFI excision of large data volumes generated from large telescopes
or arrays in both real time and offline modes, aiding the proposed strategy.Comment: 26 pages, 10 figures, Chinese version accepted for publication in
Acta Astronomica Sinica; English version to appear in Chinese Astronomy and
Astrophysic
Facilitated movement of inertial Brownian motors driven by a load under an asymmetric potential
Based on recent work [L. Machura, M. Kostur, P. Talkner, J. Luczka, and P.
Hanggi, Phys. Rev. Lett. 98, 040601 (2007)], we extend the study of inertial
Brownian motors to the case of an asymmetric potential. It is found that some
transport phenomena appear in the presence of an asymmetric potential. Within
tailored parameter regimes, there exists two optimal values of the load at
which the mean velocity takes its maximum, which means that a load can
facilitate the transport in the two parameter regimes. In addition, the
phenomenon of multiple current reversals can be observed when the load is
increased.Comment: 7 pages, 3 figure
Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow
In this paper, we prove the energy diminishing of a normalized gradient flow
which provides a mathematical justification of the imaginary time method used
in physical literatures to compute the ground state solution of Bose-Einstein
condensates (BEC). We also investigate the energy diminishing property for the
discretization of the normalized gradient flow. Two numerical methods are
proposed for such discretizations: one is the backward Euler centered finite
difference (BEFD), the other one is an explicit time-splitting sine-spectral
(TSSP) method. Energy diminishing for BEFD and TSSP for linear case, and
monotonicity for BEFD for both linear and nonlinear cases are proven.
Comparison between the two methods and existing methods, e.g. Crank-Nicolson
finite difference (CNFD) or forward Euler finite difference (FEFD), shows that
BEFD and TSSP are much better in terms of preserving energy diminishing
property of the normalized gradient flow. Numerical results in 1d, 2d and 3d
with magnetic trap confinement potential, as well as a potential of a stirrer
corresponding to a far-blue detuned Gaussian laser beam are reported to
demonstrate the effectiveness of BEFD and TSSP methods. Furthermore we observe
that the normalized gradient flow can also be applied directly to compute the
first excited state solution in BEC when the initial data is chosen as an odd
function.Comment: 28 pages, 6 figure
Discovery of Radio Emission from the Tight M8 Binary: LP 349-25
We present radio observations of 8 ultracool dwarfs with a narrow spectral
type range (M8-M9.5) using the Very Large Array at 8.5 GHz. Only the tight M8
binary LP 349-25 was detected. LP 349-25 is the tenth ultracool dwarf system
detected in radio and its trigonometric parallax pi = 67.6 mas, recently
measured by Gatewood et al., makes it the furthest ultracool system detected by
the Very Large Array to date, and the most radio-luminous outside of obvious
flaring activity or variability. With a separation of only 1.8 AU, masses of
the components of LP 349-25 can be measured precisely without any theoretical
assumptions (Forveille et al.), allowing us to clarify their fully-convective
status and hence the kind of magnetic dynamo in these components which may play
an important role to explain our detection of radio emission from these
objects. This also makes LP 349-25 an excellent target for further studies with
better constraints on the correlations between X-ray, radio emission and
stellar parameters such as mass, age, temperature, and luminosity in ultracool
dwarfs.Comment: accepted by ApJ, referee's comments included, typo in equation 1
correcte
- …