169 research outputs found

    Technical note on teak germination

    Full text link

    Orbitally excited and hybrid mesons from the lattice

    Get PDF
    We discuss in general the construction of gauge-invariant non-local meson operators on the lattice. We use such operators to study the PP- and DD-wave mesons as well as hybrid mesons in quenched QCD, with quark masses near the strange quark mass. The resulting spectra are compared with experiment for the orbital excitations. For the states produced by gluonic excitations (hybrid mesons) we find evidence of mixing for non-exotic quantum numbers. We give predictions for masses of the spin-exotic hybrid mesons with $J^{PC}=1^{-+},\ 0^{+-},and, and 2^{+-}$.Comment: 31 pages, LATEX, 8 postscript figures. Reference adde

    More about orbitally excited hadrons from lattice QCD

    Full text link
    This is a second paper describing the calculation of spectroscopy for orbitally excited states from lattice simulations of Quantum Chromodynamics. New features include higher statistics for P-wave systems and first results for the spectroscopy of D-wave mesons and baryons, for relatively heavy quark masses. We parameterize the Coulomb gauge wave functions for P-wave and D-wave systems and compare them to those of their corresponding S-wave states.Comment: 21 pages plus 14 figs, 3 include

    Tunneling and the Spectrum of the Potts Model

    Get PDF
    The three-dimensional, three-state Potts model is studied as a paradigm for high temperature quantum chromodynamics. In a high statistics numerical simulation using a Swendson-Wang algorithm, we study cubic lattices of dimension as large as 64364^3 and measure correlation functions on long lattices of dimension 202×12020^2\times 120 and 302×12030^2\times 120. These correlations are controlled by the spectrum of the transfer matrix. This spectrum is studied in the vicinity of the phase transition. The analysis classifies the spectral levels according to an underlying S3S_3 symmetry. Near the phase transition the spectrum agrees nicely with a simple four-component hamiltonian model. In the context of this model, we find that low temperature ordered-ordered interfaces nearly always involve a disordered phase intermediate. We present a new spectral method for determining the surface tension between phases.Comment: 26 pages plus 13 Postscript figures (Axis versions also provided), UU-HEP-92/

    Correlation Functions of Hadron Currents in the QCD Vacuum Calculated in Lattice QCD

    Full text link
    Point-to-point vacuum correlation functions for spatially separated hadron currents are calculated in quenched lattice QCD on a 163×2416^3\times 24 lattice with 6/g2=5.76/g^2=5.7. The lattice data are analyzed in terms of dispersion relations, which enable us to extract physical information from small distances where asymptotic freedom is apparent to large distances where the hadronic resonances dominate. In the pseudoscalar, vector, and axial vector channels where experimental data or phenomenological information are available, semi-quantitative agreement is obtained. In the nucleon and delta channels, where no experimental data exist, our lattice data complement experiments. Comparison with approximations based on sum rules and interacting instantons are made, and technical details of the lattice calculation are described.Comment: 31 pages in REVTeX (with 10 figures to be added using figures command), MIT CTP #214
    • 

    corecore