5,560 research outputs found
Transport anomalies in a simplified model for a heavy electron quantum critical point
We discuss the transport anomalies associated with the development of heavy
electrons out of a neutral spin fluid using the large-N treatment of the
Kondo-Heisenberg lattice model. At the phase transition in this model the spin
excitations suddenly acquire charge. The Higgs process by which this takes
place causes the constraint gauge field to loosely ``lock'' together with the
external, electromagnetic gauge field. From this perspective, the heavy fermion
phase is a Meissner phase in which the field representing the difference
between the electromagnetic and constraint gauge field, is excluded from the
material. We show that at the transition into the heavy fermion phase, both the
linear and the Hall conductivity jump together. However, the Drude weight of
the heavy electron fluid does not jump at the quantum critical point, but
instead grows linearly with the distance from the quantum critical point,
forming a kind of ``gossamer'' Fermi-liquid.Comment: 15 pages, 3 figures. Small change in references in v
Quantum Cluster Variables via Serre Polynomials
For skew-symmetric acyclic quantum cluster algebras, we express the quantum
-polynomials and the quantum cluster monomials in terms of Serre polynomials
of quiver Grassmannians of rigid modules. As byproducts, we obtain the
existence of counting polynomials for these varieties and the positivity
conjecture with respect to acyclic seeds. These results complete previous work
by Caldero and Reineke and confirm a recent conjecture by Rupel.Comment: minor corrections, reference added, example 4.3 added, 38 page
The statistics of particle velocities in dense granular flows
We present measurements of the particle velocity distribution in the flow of
granular material through vertical channels. Our study is confined to dense,
slow flows where the material shears like a fluid only in thin layers adjacent
to the walls, while a large core moves without continuous deformation, like a
solid. We find the velocity distribution to be non-Gaussian, anisotropic, and
to follow a power law at large velocities. Remarkably, the distribution is
identical in the fluid-like and solid-like regions. The velocity variance is
maximum at the core, defying predictions of hydrodynamic theories. We show
evidence of spatially correlated motion, and propose a mechanism for the
generation of fluctuational motion in the absence of shear.Comment: Submitted to Phys. Rev. Let
Colloid-stabilized emulsions: behaviour as the interfacial tension is reduced
We present confocal microscopy studies of novel particle-stabilized
emulsions. The novelty arises because the immiscible fluids have an accessible
upper critical solution temperature. The emulsions have been created by
beginning with particles dispersed in the single-fluid phase. On cooling,
regions of the minority phase nucleate. While coarsening these nuclei become
coated with particles due to the associated reduction in interfacial energy.
The resulting emulsion is arrested, and the particle-coated interfaces have
intriguing properties. Having made use of the binary-fluid phase diagram to
create the emulsion we then make use of it to study the properties of the
interfaces. As the emulsion is re-heated toward the single-fluid phase the
interfacial tension falls and the volume of the dispersed phase drops.
Crumpling, fracture or coalescence can follow. The results show that the
elasticity of the interfaces has a controlling influence over the emulsion
behaviour.Comment: Submitted for the proceedings of the 6th Liquid Matter Conference,
held in Utrecht (NL) in July 200
Probing spin-charge separation in a Tomonaga-Luttinger liquid
In a one-dimensional (1D) system of interacting electrons, excitations of
spin and charge travel at different speeds, according to the theory of a
Tomonaga-Luttinger Liquid (TLL) at low energies. However, the clear observation
of this spin-charge separation is an ongoing challenge experimentally. We have
fabricated an electrostatically-gated 1D system in which we observe spin-charge
separation and also the predicted power-law suppression of tunnelling into the
1D system. The spin-charge separation persists even beyond the low-energy
regime where the TLL approximation should hold. TLL effects should therefore
also be important in similar, but shorter, electrostatically gated wires, where
interaction effects are being studied extensively worldwide.Comment: 11 pages, 4 PDF figures, uses scicite.sty, Science.bs
Drying of complex suspensions
We investigate the 3D structure and drying dynamics of complex mixtures of
emulsion droplets and colloidal particles, using confocal microscopy. Air
invades and rapidly collapses large emulsion droplets, forcing their contents
into the surrounding porous particle pack at a rate proportional to the square
of the droplet radius. By contrast, small droplets do not collapse, but remain
intact and are merely deformed. A simple model coupling the Laplace pressure to
Darcy's law correctly estimates both the threshold radius separating these two
behaviors, and the rate of large-droplet evacuation. Finally, we use these
systems to make novel hierarchical structures.Comment: 4 pages, 4 figure
Quantum free energy differences from non-equilibrium path integrals: I. Methods and numerical application
The imaginary-time path integral representation of the canonical partition
function of a quantum system and non-equilibrium work fluctuation relations are
combined to yield methods for computing free energy differences in quantum
systems using non-equilibrium processes. The path integral representation is
isomorphic to the configurational partition function of a classical field
theory, to which a natural but fictitious Hamiltonian dynamics is associated.
It is shown that if this system is prepared in an equilibrium state, after
which a control parameter in the fictitious Hamiltonian is changed in a finite
time, then formally the Jarzynski non-equilibrium work relation and the Crooks
fluctuation relation are shown to hold, where work is defined as the change in
the energy as given by the fictitious Hamiltonian. Since the energy diverges
for the classical field theory in canonical equilibrium, two regularization
methods are introduced which limit the number of degrees of freedom to be
finite. The numerical applicability of the methods is demonstrated for a
quartic double-well potential with varying asymmetry. A general parameter-free
smoothing procedure for the work distribution functions is useful in this
context.Comment: 20 pages, 4 figures. Added clarifying remarks and fixed typo
Non-Fermi Liquid Behavior In Quantum Critical Systems
The problem of an electron gas interacting via exchanging transverse gauge
bosons is studied using the renormalization group method. The long wavelength
behavior of the gauge field is shown to be in the Gaussian universality class
with a dynamical exponent in dimensions .
This implies that the gauge coupling constant is exactly marginal. Scattering
of the electrons by the gauge mode leads to non-Fermi liquid behavior in . The asymptotic electron and gauge Green's functions, interaction
vertex, specific heat and resistivity are presented.Comment: 9 pages in REVTEX 2.0. Submitted to Phys. Rev. Lett. 3 figures in
postscript files can be obtained at [email protected]. The filename is
gan.figures.tar.z and it's compressed. You can uncompress it by using
commands: "uncompress gan.figures.tar.z" and "tar xvf gan.figures.tar
- …