300 research outputs found
Study of the optimal conditions for NV- center formation in type 1b diamond, using photoluminescence and positron annihilation spectroscopies
We studied the parameters to optimize the production of negatively-charged
nitrogen-vacancy color centers (NV-) in type~1b single crystal diamond using
proton irradiation followed by thermal annealing under vacuum. Several samples
were treated under different irradiation and annealing conditions and
characterized by slow positron beam Doppler-broadening and photoluminescence
(PL) spectroscopies. At high proton fluences another complex vacancy defect
appears limiting the formation of NV-. Concentrations as high as 2.3 x 10^18
cm^-3 of NV- have been estimated from PL measurements. Furthermore, we inferred
the trapping coefficient of positrons by NV-. This study brings insight into
the production of a high concentration of NV- in diamond, which is of utmost
importance in ultra-sensitive magnetometry and quantum hybrid systems
applications
Chiral symmetry breaking in hot matter
This series of three lectures covers (a) a basic introduction to symmetry
breaking in general and chiral symmetry breaking in QCD, (b) an overview of the
present status of lattice data and the knowlegde that we have at finite
temperature from chiral perturbation theory. (c) Results obtained from the
Nambu--Jona-Lasinio model describing static mesonic properties are discussed as
well as the bulk thermodynamic quantities. Divergences that are observed in the
elastic quark-antiquark scattering cross-section, reminiscent of the phenomenon
of critical opalescence in light scattering, is also discussed. (d) Finally, we
deal with the realm of systems out of equilibrium, and examine the effects of a
medium dependent condensate in a system of interacting quarks.Comment: 62 LaTex pages, incorporating 23 figures. Lectures given at the
eleventh Chris-Engelbrecht Summer School in Theoretical Physics, 4-13
February, 1998, to be published by Springer Verla
Neutron star properties in a chiral SU(3) model
We investigate various properties of neutron star matter within an effective
chiral model. The predictions of this model are
compared with a Walecka-type model. It is demonstrated that the importance of
hyperon degrees are strongly depending on the interaction used, even if the
equation of state near saturation density is nearly the same in both models.
While the Walecka-type model predicts a strange star core with strangeness
fraction , the chiral model allows only for
and predicts that , and will not exist in star, in
contrast to the Walecka-type model.Comment: 13 pages, Revtex, 5 figs include
Clustering of vacancy defects in high-purity semi-insulating SiC
Positron lifetime spectroscopy was used to study native vacancy defects in
semi-insulating silicon carbide. The material is shown to contain (i) vacancy
clusters consisting of 4--5 missing atoms and (ii) Si vacancy related
negatively charged defects. The total open volume bound to the clusters
anticorrelates with the electrical resistivity both in as-grown and annealed
material. Our results suggest that Si vacancy related complexes compensate
electrically the as-grown material, but migrate to increase the size of the
clusters during annealing, leading to loss of resistivity.Comment: 8 pages, 5 figure
Thermally Induced Fluctuations Below the Onset of Rayleigh-B\'enard Convection
We report quantitative experimental results for the intensity of
noise-induced fluctuations below the critical temperature difference for Rayleigh-B\'enard convection. The structure factor of the fluctuating
convection rolls is consistent with the expected rotational invariance of the
system. In agreement with predictions based on stochastic hydrodynamic
equations, the fluctuation intensity is found to be proportional to
where . The
noise power necessary to explain the measurements agrees with the prediction
for thermal noise. (WAC95-1)Comment: 13 pages of text and 4 Figures in a tar-compressed and uuencoded file
(using uufiles package). Detailed instructions of unpacking are include
Quantification of depth of anesthesia by nonlinear time series analysis of brain electrical activity
We investigate several quantifiers of the electroencephalogram (EEG) signal
with respect to their ability to indicate depth of anesthesia. For 17 patients
anesthetized with Sevoflurane, three established measures (two spectral and one
based on the bispectrum), as well as a phase space based nonlinear correlation
index were computed from consecutive EEG epochs. In absence of an independent
way to determine anesthesia depth, the standard was derived from measured blood
plasma concentrations of the anesthetic via a pharmacokinetic/pharmacodynamic
model for the estimated effective brain concentration of Sevoflurane. In most
patients, the highest correlation is observed for the nonlinear correlation
index D*. In contrast to spectral measures, D* is found to decrease
monotonically with increasing (estimated) depth of anesthesia, even when a
"burst-suppression" pattern occurs in the EEG. The findings show the potential
for applications of concepts derived from the theory of nonlinear dynamics,
even if little can be assumed about the process under investigation.Comment: 7 pages, 5 figure
Phase Diffusion in Localized Spatio-Temporal Amplitude Chaos
We present numerical simulations of coupled Ginzburg-Landau equations
describing parametrically excited waves which reveal persistent dynamics due to
the occurrence of phase slips in sequential pairs, with the second phase slip
quickly following and negating the first. Of particular interest are solutions
where these double phase slips occur irregularly in space and time within a
spatially localized region. An effective phase diffusion equation utilizing the
long term phase conservation of the solution explains the localization of this
new form of amplitude chaos.Comment: 4 pages incl. 5 figures uucompresse
Phase Bubbles and Spatiotemporal Chaos in Granular Patterns
We use inelastic hard sphere molecular dynamics simulations and laboratory
experiments to study patterns in vertically oscillated granular layers. The
simulations and experiments reveal that {\em phase bubbles} spontaneously
nucleate in the patterns when the container acceleration amplitude exceeds a
critical value, about , where the pattern is approximately hexagonal,
oscillating at one-fourth the driving frequency (). A phase bubble is a
localized region that oscillates with a phase opposite (differing by ) to
that of the surrounding pattern; a localized phase shift is often called an
{\em arching} in studies of two-dimensional systems. The simulations show
that the formation of phase bubbles is triggered by undulation at the bottom of
the layer on a large length scale compared to the wavelength of the pattern.
Once formed, a phase bubble shrinks as if it had a surface tension, and
disappears in tens to hundreds of cycles. We find that there is an oscillatory
momentum transfer across a kink, and this shrinking is caused by a net
collisional momentum inward across the boundary enclosing the bubble. At
increasing acceleration amplitudes, the patterns evolve into randomly moving
labyrinthian kinks (spatiotemporal chaos). We observe in the simulations that
and subharmonic patterns emerge as primary instabilities, but that
they are unstable to the undulation of the layer. Our experiments confirm the
existence of transient and patterns.Comment: 6 pages, 12 figures, submitted to Phys. Rev. E on July 1st, 2001. for
better quality figures, visit http://chaos.ph.utexas.edu/research/moo
Strange quark matter within the Nambu-Jona-Lasinio model
Equation of state of baryon rich quark matter is studied within the SU(3)
Nambu-Jona-Lasinio model with flavour mixing interaction. Possible bound states
(strangelets) and chiral phase transitions in this matter are investigated at
various values of strangeness fraction S/3B. The model predictions are very
sensitive to the ratio of vector (Gv) and scalar (Gs) coupling constants. At
Gv/Gs=0.5 and zero temperature the maximum binding energy (about 15 MeV per
baryon) takes place when strangeness fraction is about 0.4. Such strangelets
are negatively charged and have typical life times of the order of 100 ns.
Calculations are carried out also at finite temperatures. They show that bound
states exist up to temperatures of about 15 MeV. The model predicts a first
order chiral phase transition at finite baryon densities. The parameters of
this phase transition are calculated as function of strangeness fraction.Comment: 29 pages, 10 figures, to be published in Physics of Atomic Nuclei,
the memorial volume devoted to the 90th birthday of A.B. Migda
- scattering lengths at finite temperature in the Nambu--Jona-Lasinio model
The transition amplitude for scattering is evaluated within the SU(3)
Nambu--Jona-Lasinio model. Ordering terms according to the expansion in
leads to a box-like diagram, channel diagrams that admit scalar isoscalar
exchanges, and a channel exchange of a scalar isodoublet
that has quantum numbers corresponding to the . Both
the Pauli-Villars and O(3) regularization procedures are used to evaluate the
T=0 values of the scattering lengths and . The
finite temperature dependence is studied. We find that the variation in the
channel in the calculation of leads to a change in of a
factor of about two over the temperature range of T=150 MeV
- …