3,002 research outputs found

    Using adiabatic coupling techniques in atom-chip waveguide structures

    Full text link
    Adiabatic techniques are well known tools in multi-level electron systems to transfer population between different states with high fidelity. Recently it has been realised that these ideas can also be used in ultra-cold atom systems to achieve coherent manipulation of the atomic centre-of-mass states. Here we present an investigation into a realistic setup using three atomic waveguides created on top of an atom chip and show that such systems hold large potential for the observation of adiabatic phenomena in experiments.Comment: 10 pages, 6 figures, accepted for publication in Physica Scripta for the CEWQO2009 proceeding

    Persistent topographic development along a strike-slip fault system: The Mount McKinley restraining bend

    Get PDF
    The Denali Fault is a major strike-slip fault extending from British Colombia, into western Alaska. Mount McKinley, at 6,114 m, is the highest peak in North America and is located to the south of a bend in the Denali Fault (Fig.1). To the north, at the apex of the bend in the fault, Peters Dome (3,221 m) is the highest peak and north-side peak elevations rapidly decrease moving away from the bend’s apex

    Observed Faraday Effects in Damped Lyman-Alpha Absorbers and Lyman Limit Systems: The Magnetised Environment of Galactic Building Blocks at Redshift=2

    Get PDF
    Protogalactic environments are typically identified using quasar absorption lines, and these galactic building blocks can manifest as Damped Lyman-Alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). We use radio observations of Faraday effects to test whether DLAs and LLSs host a magnetised medium, by combining DLA and LLS detections throughout the literature with 1.4 GHz polarization data from the NRAO VLA Sky Survey (NVSS). We obtain a control, a DLA, and a LLS sample consisting of 114, 19, and 27 lines-of-sight respectively - all of which are polarized at ≥8σ\ge8\sigma to ensure Rician bias is negligible. Using a Bayesian framework, we are unable to detect either coherent or random magnetic fields in DLAs: the regular coherent magnetic fields within the DLAs must be ≤2.8\le2.8 μ\muG, and the lack of depolarization is consistent with the weakly magnetised gas in DLAs being non-turbulent and quiescent. However, we find mild suggestive evidence that LLSs have coherent magnetic fields: after controlling for the redshift-distribution of our data, we find a 71.5% probability that LLSs have a higher RM than a control sample. We also find strong evidence that LLSs host random magnetic fields, with a 95.5% probability that LLS lines-of-sight have lower polarized fractions than a control sample. The regular coherent magnetic fields within the LLSs must be ≤2.4\le2.4 μ\muG, and the magnetised gas must be highly turbulent with a typical scale on the order of ≈5\approx5-20 pc, which is similar to that of the Milky Way. This is consistent with the standard dynamo pedagogy, whereby magnetic fields in protogalaxies increase in coherence and strength as a function of cosmic time. Our results are consistent with a hierarchical galaxy formation scenario, with the DLAs, LLSs, and strong magnesium II (MgII) systems exploring three different stages of magnetic field evolution in galaxies.Comment: Submitted to Ap

    The transport of cosmic rays in self-excited magnetic turbulence

    Get PDF
    The process of diffusive shock acceleration relies on the efficacy with which hydromagnetic waves can scatter charged particles in the precursor of a shock. The growth of self-generated waves is driven by both resonant and non-resonant processes. We perform high-resolution magnetohydrodynamic simulations of the non-resonant cosmic-ray driven instability, in which the unstable waves are excited beyond the linear regime. In a snapshot of the resultant field, particle transport simulations are carried out. The use of a static snapshot of the field is reasonable given that the Larmor period for particles is typically very short relative to the instability growth time. The diffusion rate is found to be close to, or below, the Bohm limit for a range of energies. This provides the first explicit demonstration that self-excited turbulence reduces the diffusion coefficient and has important implications for cosmic ray transport and acceleration in supernova remnants.Comment: 8 pages, 8 figures, accepted for publication in MNRA

    Broadband, radio spectro-polarimetric study of 100 radiative-mode and jet-mode AGN

    Get PDF
    We present the results from a broadband (1 to 3 GHz), spectro-polarimetry study of the integrated emission from 100 extragalactic radio sources with the ATCA, selected to be highly linearly polarized at 1.4 GHz. We use a general purpose, polarization model-fitting procedure that describes the Faraday rotation measure (RM) and intrinsic polarization structure of up to three distinct polarized emission regions or 'RM components' of a source. Overall, 37%/52%/11% of sources are best fit by one/two/three RM components. However, these fractions are dependent on the signal-to-noise ratio (S/N) in polarization (more RM components more likely at higher S/N). In general, our analysis shows that sources with high integrated degrees of polarization at 1.4 GHz have low Faraday depolarization, are typically dominated by a single RM component, have a steep spectral index, and a high intrinsic degree of polarization. After classifying our sample into radiative-mode and jet-mode AGN, we find no significant difference between the Faraday rotation or Faraday depolarization properties of jet-mode and radiative-mode AGN. However, there is a statistically significant difference in the intrinsic degree of polarization between the two types, with the jet-mode sources having more intrinsically ordered magnetic field structures than the radiative-mode sources. We also find a preferred perpendicular orientation of the intrinsic magnetic field structure of jet-mode AGN with respect to the jet direction, while no clear preference is found for the radiative-mode sources.Comment: 29 pages (including Appendix), 28 figures, 7 tables. Accepted for publication in MNRA
    • …
    corecore