17,026 research outputs found

    Piezoelectric and optical setup to measure an electrical field: Application to the longitudinal near-field generated by a tapered coax

    Full text link
    We propose a new setup to measure an electrical field in one direction. This setup is made of a piezoelectric sintered lead zinconate titanate film and an optical interferometric probe. We used this setup to investigate how the shape of the extremity of a coaxial cable influences the longitudinal electrical near-field generated by it. For this application, we designed our setup to have a spatial resolution of 100 um in the direction of the electrical field. Simulations and experiments are presented

    Transmission of hand, foot and mouth disease and its potential driving factors in Hong Kong

    Get PDF
    published_or_final_versio

    Differential Forms and Wave Equations for General Relativity

    Full text link
    Recently, Choquet-Bruhat and York and Abrahams, Anderson, Choquet-Bruhat, and York (AACY) have cast the 3+1 evolution equations of general relativity in gauge-covariant and causal ``first-order symmetric hyperbolic form,'' thereby cleanly separating physical from gauge degrees of freedom in the Cauchy problem for general relativity. A key ingredient in their construction is a certain wave equation which governs the light-speed propagation of the extrinsic curvature tensor. Along a similar line, we construct a related wave equation which, as the key equation in a system, describes vacuum general relativity. Whereas the approach of AACY is based on tensor-index methods, the present formulation is written solely in the language of differential forms. Our approach starts with Sparling's tetrad-dependent differential forms, and our wave equation governs the propagation of Sparling's 2-form, which in the ``time-gauge'' is built linearly from the ``extrinsic curvature 1-form.'' The tensor-index version of our wave equation describes the propagation of (what is essentially) the Arnowitt-Deser-Misner gravitational momentum.Comment: REVTeX, 26 pages, no figures, 1 macr

    Slow spin relaxation in a highly polarized cooperative paramagnet

    Full text link
    We report measurements of the ac susceptibility of the cooperative paramagnet Tb2Ti2O7 in a strong magnetic field. Our data show the expected saturation maximum in chi(T) and also an unexpected low frequency dependence (< 1 Hz) of this peak, suggesting very slow spin relaxations are occurring. Measurements on samples diluted with nonmagnetic Y3+ or Lu3+ and complementary measurements on pure and diluted Dy2Ti2O7 strongly suggest that the relaxation is associated with dipolar spin correlations, representing unusual cooperative behavior in a paramagnetic system.Comment: Accepted for publication in Physical Review Letter

    Helical Tubes in Crowded Environments

    Get PDF
    When placed in a crowded environment, a semi-flexible tube is forced to fold so as to make a more compact shape. One compact shape that often arises in nature is the tight helix, especially when the tube thickness is of comparable size to the tube length. In this paper we use an excluded volume effect to model the effects of crowding. This gives us a measure of compactness for configurations of the tube, which we use to look at structures of the semi-flexible tube that minimize the excluded volume. We focus most of our attention on the helix and which helical geometries are most compact. We found that helices of specific pitch to radius ratio 2.512 to be optimally compact. This is the same geometry that minimizes the global curvature of the curve defining the tube. We further investigate the effects of adding a bending energy or multiple tubes to begin to explore the more complete space of possible geometries a tube could form.Comment: 10 page

    Brown-York Energy and Radial Geodesics

    Full text link
    We compare the Brown-York (BY) and the standard Misner-Sharp (MS) quasilocal energies for round spheres in spherically symmetric space-times from the point of view of radial geodesics. In particular, we show that the relation between the BY and MS energies is precisely analogous to that between the (relativistic) energy E of a geodesic and the effective (Newtonian) energy E_{eff} appearing in the geodesic equation, thus shedding some light on the relation between the two. Moreover, for Schwarzschild-like metrics we establish a general relationship between the BY energy and the geodesic effective potential which explains and generalises the recently observed connection between negative BY energy and the repulsive behaviour of geodesics in the Reissner-Nordstrom metric. We also comment on the extension of this connection between geodesics and the quasilocal BY energy to regions inside a horizon.Comment: v3: 7 pages, shortened and revised version to appear in CQ

    A randomised controlled study on the rehabilitation of rheumatoid arthrits patients with the use of psychological and occupational therapy

    Get PDF
    published_or_final_versio

    Contextual CMA-ES

    Get PDF
    Many stochastic search algorithms are designed to optimize a fixed objective function to learn a task, i.e., if the objective function changes slightly, for example, due to a change in the situation or context of the task, relearning is required to adapt to the new context. For instance, if we want to learn a kicking movement for a soccer robot, we have to relearn the movement for different ball locations. Such relearning is undesired as it is highly inefficient and many applications require a fast adaptation to a new context/situation. Therefore, we investigate contextual stochastic search algorithms that can learn multiple, similar tasks simultaneously. Current contextual stochastic search methods are based on policy search algorithms and suffer from premature convergence and the need for parameter tuning. In this paper, we extend the well known CMA-ES algorithm to the contextual setting and illustrate its performance on several contextual tasks. Our new algorithm, called contextual CMAES, leverages from contextual learning while it preserves all the features of standard CMA-ES such as stability, avoidance of premature convergence, step size control and a minimal amount of parameter tuning
    • …
    corecore