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Abstract
Many stochastic search algorithms are designed to
optimize a fixed objective function to learn a task,
i.e., if the objective function changes slightly, for
example, due to a change in the situation or con-
text of the task, relearning is required to adapt to
the new context. For instance, if we want to learn
a kicking movement for a soccer robot, we have to
relearn the movement for different ball locations.
Such relearning is undesired as it is highly inef-
ficient and many applications require a fast adap-
tation to a new context/situation. Therefore, we
investigate contextual stochastic search algorithms
that can learn multiple, similar tasks simultane-
ously. Current contextual stochastic search meth-
ods are based on policy search algorithms and suf-
fer from premature convergence and the need for
parameter tuning. In this paper, we extend the well
known CMA-ES algorithm to the contextual setting
and illustrate its performance on several contextual
tasks. Our new algorithm, called contextual CMA-
ES, leverages from contextual learning while it pre-
serves all the features of standard CMA-ES such
as stability, avoidance of premature convergence,
step size control and a minimal amount of parame-
ter tuning.

1 Introduction
The notion of multi-task learning1 has been stablished in
the machine learning community for at least the past two
decades [Caruana, 1997]. The main motivation for contex-
tual learning is the potential for exploiting relevant infor-
mation available in related tasks by concurrent learning us-
ing a shared representation. Therefore, instead of learning
one task at a time, we would like to learn multiple tasks
at once and exploit the correlations between related tasks.
We use a context vector to characterize a task which typi-
cally changes from one task execution to the next. For ex-
ample, consider a humanoid soccer robot that needs to pass
∗Contact email: abbas.a@ua.pt
1The terms ”contextual learning” and ”multi-task learning” are

used interchangeably throughout this paper.

the ball to its team mates which are positioned on differ-
ent locations on the field. Here, the soccer robot should
learn to kick the ball to any given target location, which is
specified by the context vector, on the field. In such cases,
learning for every possible context is clearly inefficient or
even infeasible. Therefore our goal is to generalize learned
tasks from similar contexts to a new context. To do so, we
learn a context-dependent policy for a continuous range of
contexts without restarting the learning process. In this pa-
per, we consider stochastic search algorithms for contextual
learning. Stochastic search algorithms [Hansen et al., 2003;
Sun et al., 2009; Rückstieß et al., 2008] optimize an objec-
tive function in a continuous domain. These algorithms as-
sume that the objective function is a black box function, i.e.,
they only use the objective values and don’t require gradients
or higher-order derivatives of the objective function. Con-
textual stochastic search algorithms have been investigated in
the field of policy search for robotics [Kupcsik et al., 2013;
Kober et al., 2010]. However, these policy search algorithms
typically suffer from premature convergence and perform un-
favourably in comparison to state of the art stochastic search
methods [Stulp and Sigaud, 2012] such as the CMA-ES al-
gorithm [Hansen et al., 2003]. The CMA-ES algorithm is
considered as the state of the art in stochastic optimization.
CMA-ES performs favourably in many tasks without the need
of extensive parameter tuning. The algorithm has many bene-
ficial properties, including automatic step-size adaptation, ef-
ficient covariance updates that incorporates the current sam-
ples as well as the evolution path and its invariance proper-
ties. However, CMA-ES is lacking the important feature of
contextual (multi-task) learning. Please note that standard
CMA-ES can be used to optimize the parameters of a closed
loop policy that depends on context. However, the dimension
of parameter space would grow linearly with the number of
context dimensions. Moreover, to evaluate a parameter vector
we would need to call the objective function for many differ-
ent contexts and average the results. Both facts limit the data
efficiency as it has been shown by [Ha and Liu, 2016]. There-
fore, in this paper, we extend the well known CMA-ES algo-
rithm to contextual setting using inspiration from contextual
policy search. Our new algorithm, called contextual CMA-
ES, generalizes the learned solution to new, unseen contexts
during the optimization process while it preserves all the fea-
tures of standard CMA-ES such as stability, avoidance of pre-
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mature convergence, step size control, a minimal amount of
parameter tuning and simple implementation. In our deriva-
tion of the algorithm, we also provide a new theoretical jus-
tification for the covariance matrix update rule of contextual
CMA-ES algorithm that also applies to the non-contextual
case and gives new insights into how the covariance update
can be motivated. For illustration of the algorithm, we will
use contextual standard functions and two contextual simu-
lated robotic tasks which are robot table tennis, and a robot
kick task. We show that our contextual CMA-ES algorithm
performs favourably in comparison to other contextual learn-
ing algorithms.

2 Related Work
In order to generalize a learned parameter vector for a con-
text to the other contexts, a standard approach is to opti-
mize the parameters for several target contexts independently.
Subsequently, regression methods are used to generalize the
optimized contexts to a new, unseen context [Da Silva et
al., 2012; Stulp et al., 2013]. Although such approaches
have been used successfully, they are time consuming and
inefficient in terms of the number of needed training sam-
ples as optimizing for different contexts and the generaliza-
tion between optimized parameters for different contexts are
two independent processes. Hence, we cannot reuse data-
points obtained from optimizing a task with context s to
improve and accelerate the optimization of a task with an-
other context s′. Learning for multiple tasks without restart-
ing the learning process is known as contextual (multi-task)
policy search [Kupcsik et al., 2013; Kober et al., 2010;
Deisenroth et al., 2014]. In the area of contextual stochas-
tic search algorithms, such a multi-task learning capability
was established for information-theoretic policy search al-
gorithms [Peters et al., 2010], such as the Contextual Rel-
ative Entropy Policy Search (CREPS) algorithm [Kupcsik
et al., 2013]. However, it has been shown that REPS suf-
fers from premature convergence [Abdolmaleki et al., 2016;
2015a] as the update of the covariance matrix, which is based
only on the current set of samples, is reducing the variance
of the search distribution too quickly. In order to allevi-
ate this problem, the authors of [Abdolmaleki et al., 2016;
2015a] suggest to combine the sample covariance with the old
covariance matrix, similar to the CMA-ES algorithm [Hansen
et al., 2003]. However this method does not take advantage of
other features of CMA-ES such as step-size control. In [Ha
and Liu, 2016] also, an evolutionary contextual learning al-
gorithm for only single dimensional contextual problems was
proposed. This method defines a set of discrete contexts and
represents the mean of the search distribution of each segment
of the space. They evolve the mean of each segment using the
(1+1)-CMA-ES [Igel et al., 2006] algorithm. The used dis-
cretization inherently limits the approach to one dimensional
context variable.

3 Preliminaries
In this section, we will first formulate the problem statement
and subsequently explain contextual stochastic search algo-
rithms in general. Afterwards, we will emphasize the contex-

tual Relative Entropy Policy Search (REPS) algorithm [Kupc-
sik et al., 2013], which will provide insights for the develop-
ment of the new contextual CMA-ES algorithm.

3.1 Problem Statement
We consider contextual black-box optimization problems that
are characterized by a ns-dimensional context vector s. The
task is to find for each context vector s, an optimal parame-
ter vector θ∗s that maximizes an objective function R(s,θ) :
{Rns × Rnθ} → R. Note that the objective function is also
dependent on the given context vector s. We want to find an
optimal context dependent policy m∗(s) in form of

θ∗s = m∗(s) = A∗ϕ(s), m∗(s) : Rns → Rnθ

that outputs the optimal parameter vector θ∗s for the given
context s.The vector ϕ(s) is an arbitrary nϕ-dimensional
feature function of the context s and the gain matrix A is
a nθ × nϕ matrix that models the dependence of parameters
θ on the context s. Throughout this paper, we use ϕ(s) =
[1 s], which results in linear generalization over contexts.
However, other feature functions such as radial basis func-
tions (RBF) for non-linear generalization over contexts [Ab-
dolmaleki et al., 2015b] can also be used. The only acces-
sible information on objective function R(s,θ) are returns
{Rk}k=1...N of context-parameters samples {sk,θk}k=1...N ,
where k is the index of the sample and N is number of sam-
ples.

Algorithm 1 Contextual Stochastic Search Algorithms

1: given nθ, ns, N, ϕ(s) = [1 s]
2: initializeAt=0

na×nϕ , σ
t=0 > 0,Σt=0 = Inθ×nθ , 0← t

3: repeat
4: for k = 1,...,N do
5: Observe sk
6: m(sk) = A

tTϕ(sk)
7: θk = m(sk) + σt ×N

(
0,Σt

)
8: Rk = R(sk,θk)
9: end for

10: d = ComputeWeights({sk,θk, Rk}k=1...N )
11: At+1 = UpdateMean({sk,θk, dk}k=1...N )
12: Σt+1 = UpdateCov({sk,θk, dk}k=1...N ,Σ

t,At+1,At)
13: σt+1 = UpdateStepSize(σt,At+1,At)
14: t← t+ 1
15: until stopping criterion is met

3.2 Contextual Stochastic Search
Contextual Stochastic search algorithms maintain a condi-
tional search distribution π(θ|s) over the parameter space
θ of the objective function R(s,θ). The search distribution
π(θ|s) is often modeled as a linear Gaussian distribution, i.e.,

π(θ|s) = N (θ|m(s) = Aϕ(s), σΣ) ,

where m(s) is a context dependent mean function that repre-
sents the context dependent policy we want to learn, Σ is a
covariance matrix (shape of the distribution) and σ is the step
size (magnitude). Covariance matrix and step size are used



for exploration and are independent of the context in most se-
tups. In each iteration, N context-parameter-return samples
are generated with the current contextual policy. To do so,
the context vectors sk are drawn from a possibly unknown
context distribution µ(s) 2. Subsequently, the current search
distribution πt(θ|s) is used to generate the parameter θk for
the corresponding context sk. For each sample k, the return
Rk of {sk,θk} is obtained by querying the objective function
R(s,θ). Typically, the samples {sk,θk, Rk}k=1...N are used
to compute a weight or pseudo probability dk for each sam-
ple k. Subsequently, using {sk,θk, dk}k=1...N , a new con-
ditional Gaussian search distribution πt+1(θ|s) is estimated
by updating the gain matrix At+1 of the context-dependent
mean function, the covariance matrix Σt+1 and step size
σt+1. This process is run iteratively until the algorithm con-
verges to a solution. The final solution is the mean function
m∗(s) with the estimate of the optimal gain matrixA∗ in the
last iteration. Please note that, if the context vector is fixed,
then the explained algorithm reduces to standard stochastic
search where the mean function is a constant. Algorithm 1
shows a compact representation of contextual policy search
methods.

3.3 Contextual REPS
Contextual REPS [Kupcsik et al., 2013] is an instance of the
general stochastic search algorithms introduced in the previ-
ous section where the weight computation and the distribution
update are performed in a specific way.

Computing the Weights. In order to obtain new weights
for the context-parameters-return samples in the data set, con-
textual REPS, optimizes for the joint probabilities p(sk,θk).
The key idea behind contextual REPS is to find a joint search
distribution p(s,θ) that maximizes the expected return i.e.,
maxp

∫∫
p(s,θ)Rs(θ)dsdθ, while it ensures a smooth and

stable learning process by bounding the Kullback-Leibler di-
vergence between the old search distribution q and the newly
estimated search distribution p, i.e, ε ≥ KL(p(s,θ)||q(s,θ)).
Please see [Kupcsik et al., 2013] for full description of opti-
mization program of contextual REPS. The solution of the
contextual REPS optimization program results in a weight

dk = exp

(
Rk − V (s)

η

)
/Z , Z =

N∑
k=1

dk, (1)

for each context-parameter sample [sk,θk]. The function
V (s) = φ(s)Tw is a context-dependent baseline, similar to
a value function, that depends linearly on features φ(s) of
the context vector s. It is subtracted from the return R. Intu-
itively, this subtraction allows us to assess the quality of the
samples independently of the experienced context. In this pa-
per, we use a quadratic feature function for the baseline, for
example, in a one dimensional contextual problem, we use
φ(s) = [s, s2]. The parametersw and η are Lagrangian mul-
tipliers that can be obtained by optimizing the convex dual

2Please note that the context samples depends on the task in an
uncontrollable manner. However, throughout this paper, we use a
uniform distribution to sample contexts for simplicity.

function of the REPS optimisation program, i.e.,

min
η,w

g(η,w) =ηε+ φ̂
T
w (2)

+ η log

(
N∑
K=1

1

N
exp

(
R[k] − φ(s[k])Tw

η

))
,

where φ̂ =
∑N
k=1

1
Nφ(s

[k]) is the observed context feature
expectation. ε is the maximum desired KL-divergence. The
dual-function is non-linear but convex, and, hence, can be op-
timized efficiently by any non-linear optimization algorithm.
For example we use fmincon tool in matlab.

Updating the Search Distribution. In contextual REPS,
the step size is fixed to 1, i.e., σt = 1. In order to obtain
a new Gaussian search distribution πt+1, contextual REPS
directly uses a weighted maximum likelihood estimate, i.e,

argmax
Σt+1,At+1

N∑
k=1

dk log π(θk|sk;Σt+1,At+1). (3)

Mean Function Update Rule. We can efficiently solve the
optimization program in equation 3 for At+1 in closed form.
The solution forAt+1 is given by

At+1 = (ΦTDΦ + λI)
−1

ΦTDU , (4)

where ΦT = [ϕ1, ...,ϕN ] contains the feature vector for
the policy for all sample contexts (see preliminary), U =
[θ1, ...,θN ] contains all the sample parameters and D is the
diagonal weighting matrix containing the weightings dk. The
term λI is a regularization term.

Covariance Matrix Update Rule. We can also solve the
optimization program in equation 3 for Σt+1 in closed form.
The solution for Σt+1 = S which is also known as sample
covariance S matrix and is given by

S =

N∑
k=1

dk
(
θk −At+1ϕk

)(
θk −At+1ϕk

)T
. (5)

As contextual REPS, most contextual policy search algo-
rithms only use the current set of samples to estimate the new
search distribution. It has been already noted by several au-
thors [Abdolmaleki et al., 2015a; Stulp and Sigaud, 2012]
that such approach causes problems with premature conver-
gence as the covariance matrix is overfitted to the data and,
consequently, the covariance update reduces the variance too
quickly.

4 Contextual Covariance Matrix Adaptation
Evolutionary Strategies

Current contextual stochastic search algorithms are lacking
the beneficial features from CMA-ES such as pre-mature con-
vergence avoidance, step-size control and a minimal set of
tuning parameters. To this end, we will contextualize the
CMA-ES algorithm and hence inherit all its beneficial fea-
tures. We will now explain the contextual CMA-ES rules for
computing the weights as well as the distribution updates.



Algorithm 2 Contextual CMA-ES
1: given n, ns, nc = n+ ns , N = 4 + b3 lnncc(1 + 2ns)
2: initialize At=0, σt=0 > 0, pt=0

σ = 0, pt=0
c = 0,Σt=0 =

I, 0← t
3: repeat
4: for k = 1,...,N do
5: Observe sk
6: m(sk) = Atϕ(sk)
7: θk = m(sk) + σt ×N

(
0,Σt

)
8: Rk = Rsk (θk)
9: end for

10: d = ComputeWeights({sk,θk, Rk}k=1...N ) (Eq. 6)
11: Set Hyper Parameters:

µw = 1∑N
i=1 d

2
k

(Number of effective samples)

Covariance Hyper Parameters
c1 = 2min(1,λ/6)

(nc+1.3)2+µw
, cµ = 2(µw−2+1/µw)

(nc+2)2+µw
, cc = 4

4+nc

Step Size Hyper Parameters
cσ = µw+2

nc+µw+3
, dσ = 1+cσ+2

√
µw−1
nc+1

−2+log(1+2ns)

12: Update Mean Function(Eq. 3)
13: Update Evolution Path

ϕ̂ =
∑N
k=1

1
N
ϕ(sk) , y = At+1ϕ̂−At

T
ϕ̂

σt

pt+1
c ← (1− cc)ptc + hσ

√
cc(2− cc)

√
µwy

pt+1
σ ← (1− cσ)ptσ +

√
cσ(2− cσ)

√
µw(Σt)

−1
2 y

14: Update Covariance Matrix
S = 1

(σt)2

∑N
k=1 dk(θk−AtTϕ(sk))(θk−AtTϕ(sk))T

Σt+1 = (1− c1 − cµ)Σt + cµS︸︷︷︸
rank-µ update

+ c1 pt+1
c pt+1

c

T︸ ︷︷ ︸
rank-one update

15: Update Step Size: σt+1 ← σt exp
(
cσ
dσ

(
‖pt+1
σ ‖

E‖N (0,I)‖ )
)

16: t← t+ 1
17: until stopping criterion is met

4.1 Computing the Weights
CMA-ES originally ranks the samples based on their returns
and, subsequently, it weights the samples based on this rank-
ing such that better samples get higher weights. However be-
fore we rank the samples, we need to correct the returns from
their context-dependent part so that we can judge the qual-
ity of the parameter vector θ independently of the quality of
the context s. To do so, inspired by the contextual REPS, we
compute a context-dependent baseline V (s) which we sub-
tract from the returns Rk to compute advantages Ak, i.e.,

Ak = Rk − V (sk).

The baseline function V (s) is estimated from the current
dataset {sk, Rk}k=1...N and captures the average return of
the samples for context s. I.e., V (s) is a value function
that captures the expected return for a given context using
the current search distribution. In order to learn the base-
line, we can use ridge linear regression to fit a function of
the form V (s) = βTφ(s), where φ(s) defines the context
features and β can be obtained using linear regression. In
this paper, the feature function φ(s) is similarly defined as
the feature function φ used for contextual REPS, but it con-
tains an additional bias term, i.e., φ(s) = [1 φ(s)T ]T . Af-
ter computing the new dataset {sk,θk, Ak}k=1...N , we can
now use the CMA-ES ranking to compute the weights dk for

each context-parameter sample pair [sk,θk]. We first sort the
dataset {sk,θk, Ak}k=1...N in ascending order with respect
to the advantage values Ak. Subsequently, the weight of the
jth best sample in the list is set to

dj = ln(N + 0.5)− ln(j) (6)

, which will give us the new dataset {sk,θk, dk}k=1...N that
will be used to update the search distribution. Without loss of
generality, we will assume that the weights sum to 1.

4.2 Search Distribution Update Rule
Next, we will explain the update rules for contextual CMA-
ES and give a new mathematical interpretation for covariance
matrix update rule. We will explain the parts that are rele-
vant for contextualizing the standard CMA-ES. For further
explanations regarding the tricks used in standard CMA-ES
we refer to [Hansen, 2016]. The complete contextual CMA-
ES algorithm including all parameter settings are outlined in
Algorithm 2. We will refer to the lines of the Algorithm 2.
Mean Function Update Rule. In standard CMA-ES, the mean
of the distribution is a constant and not a context-dependent
function. To update the constant mean, standard CMA-ES
uses weighted average of samples which is also the solution
of weighted maximum likelihood estimate. In order to up-
date the context-dependent mean of contextual CMA-ES, we
directly use the update rule we obtained for contextual REPS
from Equation 4 to obtain the context-dependent mean func-
tion of our distribution.

Covariance Matrix Update Rule. The covariance matrix
update of CMA-ES consists of two parts (Line 14) which are
the rank-µ and the rank-one updates.

Rank-µ Update The rank-µ update in the standard CMA-
ES algorithm incorporates the information about the current
successful steps (Line 14). This information is stored in
the sample covariance matrix S (Line 14). The sample co-
variance in the CMA-ES algorithm is computed differently
than in REPS. While REPS uses the new context dependent
mean function mt+1(s) to compute the covariance matrix
Σt+1(Equation 5), CMA-ES uses the old context dependent
mean functionmt(s), i.e.,

Scma =
1

σt2

N∑
k=1

dk
(
θk −Atϕ(sk)

)(
θk −Atϕ(sk)

)T
.

By using the old mean function mt(s), we are increasing the
likelihood of successful steps instead of likelihood of suc-
cessful samples. In the other word we are interested in re-
peating the mutations(or steps) that resulted in current good
samples instead of repeating the current good samples them-
selves. This approach has been shown to be less prone to
premature convergence [Hansen, 2016].

Rank-one Update In standard CMA-ES, the rank-one up-
date uses a vector called evolution path p. Evolution path
records the sum of consecutive step updates of the mean
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Figure 1: The performance comparison of stochastic search methods for optimizing contextual version of standard functions (a)Sphere
(b)Rosenbrock, The results show that while both contextual CMA-ES and contextual REPS-CMAES perform well, Contextual REPS suffers
from premature convergence and contextual REPS-rankµ is very slow which shows the importance of step size control and incorporation
of evolution path. We also compared with standard CMA-ES to show the importance of contextual version of CMA-ES. (c) Evaluation of
influence of baseline in contextual CMA-ES for the Sphere and Rosenbrock functions. As the figure shows, the baseline is crucial for good
performance of contextual CMA-ES. Please note that y in −10−y is value on y axis.

y = mt+1−mt

σt of the search distribution. If consecutive up-
date steps are towards the same direction, i.e., they are corre-
lated, their updates will sum up. In contrast, if they are decor-
related, the update directions cancel each other out. Using the
information from the evolution path leads to significant im-
provements in terms of convergence speed, as it enables the
algorithm to exploit correlations between consecutive steps.
For a full explanation see [Hansen, 2016]. However in con-
textual CMA-ES, the mean is now a context dependent func-
tion and not a constant. Therefore, to compute the evolution
path pc (Line 13), we use the expected mean update of the
search distribution over the context distribution µt(s), i.e,

y =
Es∼µt(s)[mt+1(s)−mt(s)]

σt
.

Computing y for our samples reads

y =
(At+1 −At)ϕ̂

σt
, ϕ̂ =

N∑
k=1

1

N
ϕ(sk). (7)

The final covariance matrix update rule combines the old co-
variance matrix, sample covariance matrix and the evolution
path information matrix, i.e,

Σt+1 = (1− c1 − cµ)Σt + cµScma︸ ︷︷ ︸
rank-µ update

+ c1 p
t+1
c pt+1

c
T︸ ︷︷ ︸

rank-one update

.

The factors c1 and cµ are the corresponding factors for rank-
one and rank-µ updates such that c1 + cµ ≤ 1.

Interpretation of the CMA-ES Covariance Update Rule.
Originally, the CMA-ES update rules have been obtained
from intuitive, well-defined heuristics. Recently, it has been
shown that the rank-µ update of covariance follows an ap-
proximate natural gradient of the expected returns [Akimoto
et al., 2012]. In this section, we give a new mathematical
interpretation for contextual CMA-ES covariance matrix up-
date rule which also applies to standard CMA-ES. The co-
variance update rule in Line 14 has been shown very effective

for reproducing past successful steps while avoiding prema-
ture convergence. In fact, this update rule can be obtained
by maximizing the likelihood of weighted steps as well as
the weighted evolution path-step while minimizing the KL-
divergence between new and old search distribution to avoid
over-fitting and premature convergence, i.e,

argmax
Σt+1|m=mt

N∑
k=1

dk log π
t+1(θk|sk)︸ ︷︷ ︸

successful steps

+

λ log πt+1(pt+1
c +mt(ŝ)|ŝ)︸ ︷︷ ︸

evolution path

− γKL(πt|πt+1)︸ ︷︷ ︸
Avoids overfitting

.

Where ŝ =
∑N
k=1

1
N sk. The notation {Σt+1|m = mt}

means that we optimize for Σt+1 while the mean function
is set to the old mean function mt which results in an opti-
mized Σt+1 for successful steps. λ > 0 and γ > 0 define
the trade off between maximizing the likelihood of success-
ful steps and keeping the KL-divergence of the new and old
search distribution small. By setting λ and γ to zero and set-
ting the mean function to the new one i.e., m = mt+1, we
obtain the sample covariance matrix S used by REPS. Con-
sidering a Gaussian search distribution, we can solve this op-
timization program in closed form and obtain the exact form
of covariance matrix update rule as shown in Line 14 (Please
see supplement material for derivation details)3. This deriva-
tion allows for the first time to formulate a clearly defined
objective to obtain the full CMAES update rules which gives
us a better understanding of the algorithm.

4.3 Step Size Update Rule
The step-size adaptation control of CMAES also uses the evo-
lution path vector pσ (line 13) to correct the step size. The
intuition is that if the successful steps between consecutive
search distributions are towards the same direction, i.e., they

3https://goo.gl/MLzKsW



are correlated, the updates will sum up and the evolution path
will have a high magnitude. In this case, the step size should
be increased. If the update directions cancel each other out,
the evolution path will have a small magnitude and the step
size should be decreased. In the contextual case, similar to the
rank-one update, we use the Equation 7 to compute the mean
update between two consecutive search distribution. Line 15
shows the step size update rule. For a full explanation about
CMA-ES step size control, see [Hansen, 2016].

4.4 Algorithm
Algorithm 2 shows a compact representation of the contex-
tual CMA-ES algorithm. In each iteration, we generate N
context-parameters samples and evaluate their return (Lines
3-9). Subsequently, we compute a weight for each individual
based on the return (Line 10). We compute the number of ef-
fective samples (Line 11). Similar to standard CMA-ES, we
empirically obtained a default setting for hyper parameters of
the algorithm which scales with the dimension of context and
parameter space and size of the population (Line 11). Subse-
quently we compute the new mean function and new expected
evolution path (Line 12-13). Please note that similar to stan-
dard CMA-ES we also use different evolution path vector for
step size and covariance updates. Finally, we obtain the new
expected covariance matrix and new expected step size (Line
14-15)4.

5 Hybrid Algorithms
From the general algorithmic description in Algorithm 1 we
can see that the weight computation and the distribution up-
date are mostly independent for the algorithms and can be
exchanged. Hence, we can create hybrid versions of those,
for example by combining the weight computation of REPS
with the distribution update of contextual CMAES. We will
denote this algorithm contextual REPS-CMAES.

6 Experiments
In this section, we evaluate four contextual algorithms such as
CMA-ES, REPS, REPS-CMAES and REPS-Rankµ [Abdol-
maleki et al., 2016]5. The REPS-CMAES algorithm uses the
weighting method of REPS and the distribution update rule
of CMA-ES. REPS-Rankµ also uses the weighting method
of REPS but it uses only the rank-µ update rule of CMA-
ES without step size adaptation. We also evaluate simulta-
neous multi task learning versus learning tasks in isolation.
We chose two series of optimization tasks for comparisons.
In the first series, we use the standard optimization test func-
tions [Molga and Smutnicki, 2005] , and for the second series
of optimization tasks, we use a robot table tennis task. For
all experiments, the KL-bound ε for REPS is set to 1 and for
all experiments we use the default hyper parameter settings
given in Algorithm 1 without further tuning. Please note that
if the context dimension ns is set to zero, we get the parame-
ter setting for standard CMA-ES.

4Expectation here is over context distribution
5Matlab code for reproducing the results on standard func-

tions as well as videos regarding the experiments (table tennis
and robot kick) at https://goo.gl/MLzKsW

6.1 Standard Functions
We chose two standard optimization functions which are the
Sphere function Rs(θ) =

∑n
i=1 x

2
i , and the Rosenbrock

function Rs(θ) =
∑n−1
i=1 [100(xi+1 − x2

i )
2 + (1 − xi)2],

where x = θ + Gs adapts the sample θ linearly with the
context. The matrix G is a constant matrix and is sampled
from a normal distribution. Our standard functions have a
global minimum with a value of zero for every context. How-
ever our algorithm in the paper is a maximizer. Therefore, we
multiply the functions by -1 such that now their maximum
is 0. We want to find an optimum policy that for every con-
text s outputs the optimal parameter θ∗. The optimum θ∗s
for these functions is linearly dependent on the given context
s, hence, we initially test the performance of the algorithms
under ’ideal contextual’ conditions, i.e., the contextual pol-
icy is able to represent the optimal parameter vector θ∗s for
each context s. We choose a linear policy m(s) = As + b.
For the initial linear policy, A matrix is set to zero and b is
sampled from a normal distribution. The initial covariance
matrix is the identity matrix and the initial step size σ is 1.
Moreover the contexts are sampled uniformly from interval
1 ≤ si ≤ 2, i = 1, . . . , ns where ns is dimension of the
context space s. For the Sphere we used a two dimensional
context and 20 dimensional parameters while for the Rosen-
brock function, we used a one dimensional context vector and
20 dimensional parameters. In each iteration we generate 50
context-parameters samples. We perform 20 trials for each
experiment. And We report the average return of context-
parameters samples in each iteration and the standard devia-
tion over all 20 trials.

Algorithmic Comparison.
We compared contextual CMA-ES, contextual REPS, contex-
tual REPS-CMAES, contextual REPS-Rank-µ and standard
CMA-ES. The results in Figure 1(a) and Figure 1(b) show
that contextual CMA-ES and contextual REPS-CMAES
could successfully learn the contextual tasks while contex-
tual REPS suffers from premature convergence and REPS-
rankµ is too slow. As REPS-rankµ does not have step size
control, this result shows the importance of step size con-
trol. Standard CMA-ES could not learn the task as it does not
have any knowledge of the context. Please note that in this
task standard CMA-ES which is a non-contextual algorithm
has better performance than the contextual REPS. The reason
is that contextual REPS suffers from premature convergence
due to using only sample covariance. We already used more
samples for contextual REPS to reduce the variance of co-
variance estimate and found a setting where contextual REPS
found a better policy than standard CMA-ES. Yet, contex-
tual REPS, needs much more samples to find such a policy.
However contextual REPS with a proper covariance adapta-
tion performs favourably(See Contextual REPS-CMAES).

Evaluation of the Baseline.
We also evaluated the influence of the baseline term that we
use for contextual CMA-ES weighting. We use the sphere
function with 3 dimensional context and 20 parameters. We
also use the Rosenbrock with 1 dimensional context and 20
parameters. We generate 30 samples in each iteration. The
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Figure 2: (a)The table tennis learning setup. The incoming ball has different initial velocity which is used as context vector. The goal of the
robot is to learn forehand strokes to return the ball to a fixed target position.(b) Comparison of contextual algorithms on the table tennis task.
Contextual REPS-CMAES achieves slightly better final performance. Please note that y in 10y is value on y axis. (c) We trained the robot for
a single, but hard context when the ball bounces at the middle of the table in the x-axis(red trajectory in Figure (a)) . In this case, the required
solution is quite different from the initial solution. Due to the difficulty of the task, the robot could not learn the task and only found a locally
optimal solution that hits the ball, but could not place it on the other side of the table. We also trained the robot in contextual setting where
the context range includes the desired context but also easier tasks. The results show that the robot can learn even the complex task in this
contextual setting as the easier tasks provide a guidance to the correct solution also for the difficult task.

results in Figure 1(c) show that without baseline term, i.e.,
V (s) = 0, contextual CMA-ES can not find a good solution.
Therefore, the baseline is a crucial part of the algorithm.

6.2 Robot Table Tennis
In this task, we use a simulated robot arm (see Figure 2(a))
to learn forehand hitting strokes in a table tennis game. The
robot is mounted on a floating base and has 8 actuated joints
including the floating base. The goal of the robot is to re-
turn the incoming ball at a target position on the opponent’s
side of the table. However, the ball is always served differ-
ently towards the robot with different initial velocities in the
x-direction. We use the initial velocity of the ball as con-
text, i.e., s = [vx]. To learn the task we use a linear policy
m(s) = As + b which is also the mean function of distri-
bution. We initialize b with a initial DMP trajectory obtained
by kinesthetic teaching, such that the movement generates a
single forehand stroke. Other parameters have the same ini-
tialization as we did for standard functions. We only learn
the final positions and final velocities of the DMP trajectories
as well as the τ time-scaling parameter and the starting time
point of the DMP which results in 18 parameters vector θ.
The reward function is defined by the sum of quadratic penal-
ties for missing the ball (minimum distance between ball and
racket trajectory) and missing the target return position.

Algorithm Comparison
We compared contextual stochastic search methods on ta-
ble tennis task. The results in Figure 2(b) shows that both
the contextual CMA-ES and contextual REPS-CMA-ES can
learn the task.However REPS-CMAES slightly outperforms
contextual CMA-ES with the final solution. Contextual REPS
again suffers from pre mature convergence. We also see that
standard CMA-ES fails to learn this task.

Multi task learning versus Single task learning
In this experiment, we want to show that multi task learning
can even facilitate learning of a single task. To do so, we

choose a hard context to learn as it is shown in Figure 2(a)
with a red trajectory. Here, the ball is served directly towards
the robot and it lands close to the border of the table, which
requires a quite different movement as the initial solution. We
use the standard CMA-ES algorithm to learn this task, but as
the results in Figure 2(c) show, the algorithm failed to learn
it. However, when we use contextual CMA-ES with a context
range that includes this desired context but also simpler tasks,
it manages to learn this task 2(c). Hence, the simpler tasks
guided the algorithm to find also a good solution for the hard
task and avoid the local minimum found by the single task
learner.

7 Conclusion and Future Work

Stochastic search methods such as CMA-ES have been em-
ployed extensively for black box optimization. However,
these algorithms lack the important feature of contextual
learning. Therefore we extended CMA-ES for contextual set-
ting while we also provide a new theoretical justification for
its covariance update rule. It turns out using baseline, the
old covariance matrix and the step size control are crucial in-
gredients for a competitive performance. One interesting ob-
servation is that contextual learning also facilitates learning
single tasks. The reason is that easier tasks can guide the op-
timisation for learning harder tasks. For the future work we
will investigate the application of the contextual CMA-ES for
full reinforcement learning problems where we need to find
the optimal actions for task states.
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