1,290 research outputs found

    Chemical compositions and plasma parameters of planetary nebulae with Wolf-Rayet and wels type central stars

    Get PDF
    Aims: Chemical compositions and other properties of planetary nebulae around central stars of spectral types [WC], [WO], and wels are compared with those of `normal' central stars, in order to clarify the evolutionary status of each type and their interrelation. Methods: We use plasma diagnostics to derive from optical spectra the plasma parameters and chemical compositions of 48 planetary nebulae. We also reanalyze the published spectra of a sample of 167 non-WR PN. The results as well as the observational data are compared in detail with those from other studies of the objects in common. Results: The central star's spectral type is clearly correlated with electron density, temperature and excitation class of the nebula, [WC] nebulae tend to be smaller than the other types. All this corroborates the view of an evolutionary sequence from cool [WC 11] central stars inside dense, low excitation nebulae towards hot [WO 1] stars with low density, high excitation nebulae. The wels PN, however, appear to be a separate class of objects, not linked to WRPN by evolution, --abridged--Comment: 17 pages, 28 figures, Accepted in A&A. Accepted in A&

    The core shift effect in the blazar 3C 454.3

    Full text link
    Opacity-driven shifts of the apparent VLBI core position with frequency (the "core shift" effect) probe physical conditions in the innermost parts of jets in active galactic nuclei. We present the first detailed investigation of this effect in the brightest gamma-ray blazar 3C454.3 using direct measurements from simultaneous 4.6-43 GHz VLBA observations, and a time lag analysis of 4.8-37 GHz lightcurves from the UMRAO, CrAO, and Metsahovi observations in 2007-2009. The results support the standard Konigl model of jet physics in the VLBI core region. The distance of the core from the jet origin r_c(nu), the core size W(nu), and the lightcurve time lag DT(nu) all depend on the observing frequency nu as r_c(nu)~W(nu)~ DT(nu)~nu^-1/k. The obtained range of k=0.6-0.8 is consistent with the synchrotron self-absorption being the dominating opacity mechanism in the jet. The similar frequency dependence of r_c(nu) and W(nu) suggests that the external pressure gradient does not dictate the jet geometry in the cm-band core region. Assuming equipartition, the magnetic field strength scales with distance r as B = 0.4(r/1pc)^-0.8 G. The total kinetic power of electron/positron jet is about 10^44 ergs/s.Comment: Accepted for publication in MNRAS; 10 pages, 6 figure
    corecore