75 research outputs found

    Lithium distribution across the membrane of motoneurons in the isolated frog spinal cord

    Get PDF
    Lithium sensitive microelectrodes were used to investigate the transmembrane distribution of lithium ions (Li+) in motoneurons of the isolated frog spinal cord. After addition of 5 mmol·l–1 LiCl to the bathing solution the extracellular diffusion of Li+ was measured. At a depth of 500 m, about 60 min elapsed before the extracellular Li+ concentration approached that of the bathing solution. Intracellular measurements revealed that Li+ started to enter the cells soon after reaching the motoneuron pool and after up to 120 min superfusion, an intra — to extracellular concentration ratio of about 0.7 was obtained. The resting membrane potential and height of antidromically evoked action potentials were not altered by 5 mmol·l–1 Li+

    Effects of lithium on electrical activity and potassium ion distribution in the vertebrate central nervous system

    Get PDF
    Three different regions of the vertebrate central nervous system maintained in vitro (frog spinal cord, guinea pig olfactory cortex and hippocampus) have been used to investigate how Li+ influences membrane potential, membrane resistance, action potentials, synaptic potentials and the transmembrane K+-distribution of neurons and glial cells. In view of the therapeutic action of Li+ in manicdepressive disease, a special effort was made to determine the threshold concentration for the actions of Li+ on the parameters described above. It was observed that Li+ induced a membrane depolarization of both neurons and glial cells, a decrease of action potential amplitudes, a facilitation of monosynaptic excitatory postsynaptic potentials and a depression of polysynaptic reflexes. The membrane resistance of neurons was not altered. Li+ also induced an elevation of the free extracellular potassium concentration and a decrease of the free intracellular potassium concentration. Furthermore, in the presence of Li+ a slowing of the recovery of the membrane potential of neurons and glial cells, and of the extracellular potassium concentration after repetitive synaptic stimulation was observed. The threshold concentrations for the effects of Li+ were below 5 mmol/l in the frog spinal cord and below 2 mmol/l in the guinea pig olfactory cortex and hippocampus. The basic mechanism underlying the action of Li+ may be an interaction with the transport-function of the Na+/K+ pump

    The cross-sectional GRAS sample: A comprehensive phenotypical data collection of schizophrenic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schizophrenia is the collective term for an exclusively clinically diagnosed, heterogeneous group of mental disorders with still obscure biological roots. Based on the assumption that valuable information about relevant genetic and environmental disease mechanisms can be obtained by association studies on patient cohorts of ≥ 1000 patients, if performed on detailed clinical datasets and quantifiable biological readouts, we generated a new schizophrenia data base, the GRAS (Göttingen Research Association for Schizophrenia) data collection. GRAS is the necessary ground to study genetic causes of the schizophrenic phenotype in a 'phenotype-based genetic association study' (PGAS). This approach is different from and complementary to the genome-wide association studies (GWAS) on schizophrenia.</p> <p>Methods</p> <p>For this purpose, 1085 patients were recruited between 2005 and 2010 by an invariable team of traveling investigators in a cross-sectional field study that comprised 23 German psychiatric hospitals. Additionally, chart records and discharge letters of all patients were collected.</p> <p>Results</p> <p>The corresponding dataset extracted and presented in form of an overview here, comprises biographic information, disease history, medication including side effects, and results of comprehensive cross-sectional psychopathological, neuropsychological, and neurological examinations. With >3000 data points per schizophrenic subject, this data base of living patients, who are also accessible for follow-up studies, provides a wide-ranging and standardized phenotype characterization of as yet unprecedented detail.</p> <p>Conclusions</p> <p>The GRAS data base will serve as prerequisite for PGAS, a novel approach to better understanding 'the schizophrenias' through exploring the contribution of genetic variation to the schizophrenic phenotypes.</p

    Spacers, Probability, and Yields

    No full text

    Recombinant human erythropoietin delays loss of gray matter in chronic schizophrenia

    No full text
    International audienceNeurodevelopmental abnormalities together with neurodegenerative processes contribute to schizophrenia, an etiologically heterogeneous, complex disease phenotype which has been difficult to model in animals. The neurodegenerative component of schizophrenia is best documented by magnetic resonance imaging (MRI), demonstrating progressive cortical gray matter loss over time. No treatment exists to counteract this slowly proceeding atrophy. The hematopoietic growth factor erythropoietin (EPO) is neuroprotective in animals. Here we show by voxel-based morphometry in 32 human subjects in a placebo-controlled study that weekly high-dose EPO for as little as 3 months halts the progressive atrophy in brain areas typically affected in schizophrenia, including hippocampus, amygdala, nucleus accumbens, and several neocortical areas. Specifically, gray matter protection is highly associated with improvement in attention and memory functions. These findings suggest that a neuroprotective strategy is effective against common pathophysiological features of schizophrenic patients, and strongly encourage follow-up studies to optimize EPO treatment dose and duration
    • …
    corecore