392 research outputs found

    Safe on My Phone? Same-Sex Attracted Young People’s Negotiations of Intimacy, Visibility, and Risk on Digital Hook-Up Apps

    Full text link
    This article draws on focus group interviews with same-sex attracted Australian men and women aged 18-29, to reflect on their accounts of the perceived risks and opportunities offered by hook-up apps such as Grindr, Blendr, and Hornet. Until recently, scholarly accounts of same-sex attracted men hooking up online have primarily focused on measuring the safety of sexual encounters in relation to HIV and “risky” sexual practices. This article extends previous health-related studies by considering the ways that the exchange of sexually explicit digital self-portraits (or selfies) feature within digital sexual negotiations and also exploring same-sex attracted women’s perceptions of safety and risk in relation to dating and hook-up apps and websites. It draws on recent scholarship on Grindr and other geo-locative hook-up apps to explore the material role that mobile phones and apps play in establishing a sense of safety, intimacy, and/or risk within flirtations and sexual interactions and the ways that young people’s “off-label” (or non-sexual) uses of hook-up apps might facilitate (and diminish) their sense of queer identity and visibility

    Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory

    Get PDF
    Lorentz invariance violation (LIV) is often described by dispersion relations of the form E-i(2) = m(i)(2) + p(i)(2) + delta E-i,n(2+ n) with delta different based on particle type i, with energy E, momentum p and rest mass m. Kinematics and energy thresholds of interactions are modified once the LIV terms become comparable to the squared masses of the particles involved. Thus, the strongest constraints on the LIV coefficients delta(i,n) tend to come from the highest energies. At sufficiently high energies, photons produced by cosmic ray interactions as they propagate through the Universe could be subluminal and unattenuated over cosmological distances. Cosmic ray interactions can also be modified and lead to detectable fingerprints in the energy spectrum and mass composition observed on Earth. The data collected at the Pierre Auger Observatory are therefore possibly sensitive to both the electromagnetic and hadronic sectors of LIV. In this article, we explore these two sectors by comparing the energy spectrum and the composition of cosmic rays and the upper limits on the photon flux from the Pierre Auger Observatory with simulations including LIV. Constraints on LIV parameters depend strongly on the mass composition of cosmic rays at the highest energies. For the electromagnetic sector, while no constraints can be obtained in the absence of protons beyond 10(19) eV, we obtain delta(gamma,0) \u3e -10-21, delta(gamma,1) \u3e -10(-4)0 eV(-1) and delta(gamma,2) \u3e -10(-58) eV(-2) in the case of a subdominant proton component up to 10(20) eV. For the hadronic sector, we study the best description of the data as a function of LIV coefficients and we derive constraints in the hadronic sector such as delta(had,0) \u3c 10(-1)9, delta(had),1 \u3c 10-38 eV(-1) and delta(had),2 \u3c 10-57 eV(-2) at 5 sigma CL

    Hooking up with friends: LGBTQ plus young people, dating apps, friendship and safety

    Full text link
    © The Author(s) 2020. Research exploring digital intimate publics tends to consider social media platforms and dating/hook-up apps separately, implying distance between social and sexual communication practices. This paper troubles that delineation by drawing on LGBTQ+ young people’s accounts of negotiating safety and risk in dating/hook-up apps, in which friendship practices are significant. We explore four key themes of friendship that arose in our analysis of interviews and workshop discussions: sharing mutuals (or friends-in-common) with potential dates/hook-ups; making friends through apps; friends supporting app negotiations; and friends’ involvement in safety strategies. Through analysis of these data, we firstly argue that friendship is often both an outcome and an organising force of LGBTQ+ young people’s uses of dating/hook-up apps, and secondly, that media sites commonly defined as social (e.g. Instagram) or sexual (e.g. Tinder) are imbricated, with friendship contouring queer sex and dating practices

    Cosmic-Ray Anisotropies in Right Ascension Measured by the Pierre Auger Observatory

    Get PDF
    We present measurements of the large-scale cosmic-ray (CR) anisotropies in R.A., using data collected by the surface detector array of the Pierre Auger Observatory over more than 14 yr. We determine the equatorial dipole component, d{{\boldsymbol{d}}}_{\perp }, through a Fourier analysis in R.A. that includes weights for each event so as to account for the main detector-induced systematic effects. For the energies at which the trigger efficiency of the array is small, the "east–west" method is employed. Besides using the data from the array with detectors separated by 1500 m, we also include data from the smaller but denser subarray of detectors with 750 m separation, which allows us to extend the analysis down to ∼0.03 EeV. The most significant equatorial dipole amplitude obtained is that in the cumulative bin above 8 EeV, d=6.00.9+1.0{d}_{\perp }={6.0}_{-0.9}^{+1.0}%, which is inconsistent with isotropy at the 6σ level. In the bins below 8 EeV, we obtain 99% CL upper bounds on d⊥ at the level of 1%–3%. At energies below 1 EeV, even though the amplitudes are not significant, the phases determined in most of the bins are not far from the R.A. of the Galactic center, at αGC = −94°, suggesting a predominantly Galactic origin for anisotropies at these energies. The reconstructed dipole phases in the energy bins above 4 EeV point instead to R.A. that are almost opposite to the Galactic center one, indicative of an extragalactic CR origin

    A 3-Year Sample of Almost 1,600 Elves Recorded Above South America by the Pierre Auger Cosmic-Ray Observatory

    Get PDF
    ©2020. The Authors. Elves are a class of transient luminous events, with a radial extent typically greater than 250 km, that occur in the lower ionosphere above strong electrical storms. We report the observation of 1,598 elves, from 2014 to 2016, recorded with unprecedented time resolution (100 ns) using the fluorescence detector (FD) of the Pierre Auger Cosmic-Ray Observatory. The Auger Observatory is located in the Mendoza province of Argentina with a viewing footprint for elve observations of 3.106 km2, reaching areas above the Pacific and Atlantic Oceans, as well as the Córdoba region, which is known for severe convective thunderstorms. Primarily designed for ultrahigh energy cosmic-ray observations, the Auger FD turns out to be very sensitive to the ultraviolet emission in elves. The detector features modified Schmidt optics with large apertures resulting in a field of view that spans the horizon, and year-round operation on dark nights with low moonlight background, when the local weather is favorable. The measured light profiles of 18% of the elve events have more than one peak, compatible with intracloud activity. Within the 3-year sample, 72% of the elves correlate with the far-field radiation measurements of the World Wide Lightning Location Network. The Auger Observatory plans to continue operations until at least 2025, including elve observations and analysis. To the best of our knowledge, this observatory is the only facility on Earth that measures elves with year-round operation and full horizon coverage

    Human arrival and landscape dynamics in the northern Bahamas

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fall, P. L., van Hengstum, P. J., Lavold-Foote, L., Donnelly, J. P., Albury, N. A., & Tamalavage, A. E. Human arrival and landscape dynamics in the northern Bahamas. Proceedings of the National Academy of Sciences of the United States of America, 118(10), (2021): e2015764118, https://doi.org/10.1073/pnas.2015764118.The first Caribbean settlers were Amerindians from South America. Great Abaco and Grand Bahama, the final islands colonized in the northernmost Bahamas, were inhabited by the Lucayans when Europeans arrived. The timing of Lucayan arrival in the northern Bahamas has been uncertain because direct archaeological evidence is limited. We document Lucayan arrival on Great Abaco Island through a detailed record of vegetation, fire, and landscape dynamics based on proxy data from Blackwood Sinkhole. From about 3,000 to 1,000 y ago, forests dominated by hardwoods and palms were resilient to the effects of hurricanes and cooling sea surface temperatures. The arrival of Lucayans by about 830 CE (2σ range: 720 to 920 CE) is demarcated by increased burning and followed by landscape disturbance and a time-transgressive shift from hardwoods and palms to the modern pine forest. Considering that Lucayan settlements in the southern Bahamian archipelago are dated to about 750 CE (2σ range: 600 to 900 CE), these results demonstrate that Lucayans spread rapidly through the archipelago in less than 100 y. Although precontact landscapes would have been influenced by storms and climatic trends, the most pronounced changes follow more directly from landscape burning and ecosystem shifts after Lucayan arrival. The pine forests of Abaco declined substantially between 1500 and 1670 CE, a period of increased regional hurricane activity, coupled with fires on an already human-impacted landscape. Any future intensification of hurricane activity in the tropical North Atlantic Ocean threatens the sustainability of modern pine forests in the northern Bahamas.This research was supported by NSF Awards GSS-1118340 (P.L.F.), OCE-1356509 (P.J.v.H.), OCE-1703087 (P.J.v.H.), and OCE-1356708 (J.P.D.)

    A broad distribution of the alternative oxidase in microsporidian parasites

    Get PDF
    Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of ironsulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosome

    Revising evidence of hurricane strikes on Abaco Island (the Bahamas) over the last 700 years

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Winkler, T. S., van Hengstum, P. J., Donnelly, J. P., Wallace, E. J., Sullivan, R. M., MacDonald, D., & Albury, N. A. Revising evidence of hurricane strikes on Abaco Island (the Bahamas) over the last 700 years. Scientific Reports, 10(1), (2020): 16556, doi:10.1038/s41598-020-73132-x.The northern Bahamas have experienced more frequent intense-hurricane impacts than almost anywhere else in the Atlantic since 1850 CE. In 2019, category 5 (Saffir-Simpson scale) Hurricane Dorian demonstrated the destructive potential of these natural hazards. Problematically, determining whether high hurricane activity levels remained constant through time is difficult given the short observational record (< 170 years). We present a 700-year long, near-annually resolved stratigraphic record of hurricane passage near Thatchpoint Blue Hole (TPBH) on Abaco Island, The Bahamas. Using longer sediment cores (888 cm) and more reliable age-control, this study revises and temporally expands a previous study from TPBH that underestimated the sedimentation rate. TPBH records at least 13 ≥ category 2 hurricanes per century between 1500 to 1670 CE, which exceeds the 9 ≥ category 2 hurricanes per century within 50 km of TPBH since 1850 CE. The eastern United States also experienced frequent hurricanes from 1500 to 1670 CE, but frequency was depressed elsewhere in the Atlantic Ocean. This suggests that spatial heterogeneity in Atlantic hurricane activity since 1850 CE could have persisted throughout the last millennium. This heterogeneity is impacted by climatic and stochastic forcing, but additional high-resolution paleo-hurricane reconstructions are required to assess the mechanisms that impact regional variability.Field support was provided by Jody Albury and the staff of Friends of the Environment in Marsh Harbour, The Bahamas, and technical support was provided was provided by M. Horgan and S. Molodtsov. Funding for this project was provided by NSF Awards OCE-1356509, OCE-1356708, OCE-1854917, OCE-1903616, and ICER-1854980. The open access publishing fees for this article have been covered by the Texas A&M University Open Access to Knowledge Fund (OAKFund), supported by the University Libraries

    Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory

    Get PDF
    AMIGA (Auger Muons and Infill for the Ground Array) is an upgrade of the Pierre Auger Observatory to complement the study of ultra-high-energy cosmic rays (UHECR) by measuring the muon content of extensive air showers (EAS). It consists of an array of 61 water Cherenkov detectors on a denser spacing in combination with underground scintillation detectors used for muon density measurement. Each detector is composed of three scintillation modules, with 10 m2 detection area per module, buried at 2.3 m depth, resulting in a total detection area of 30 m2. Silicon photomultiplier sensors (SiPM) measure the amount of scintillation light generated by charged particles traversing the modules. In this paper, the design of the front-end electronics to process the signals of those SiPMs and test results from the laboratory and from the Pierre Auger Observatory are described. Compared to our previous prototype, the new electronics shows a higher performance, higher efficiency and lower power consumption, and it has a new acquisition system with increased dynamic range that allows measurements closer to the shower core. The new acquisition system is based on the measurement of the total charge signal that the muonic component of the cosmic ray shower generates in the detector

    Design and implementation of the AMIGA embedded system for data acquisition

    Get PDF
    The Auger Muon Infill Ground Array (AMIGA) is part of the AugerPrime upgrade of the Pierre Auger Observatory. It consists of particle counters buried 2.3 m underground next to the water-Cherenkov stations that form the 23.5 km2 large infilled array. The reduced distance between detectors in this denser area allows the lowering of the energy threshold for primary cosmic ray reconstruction down to about 1017 eV. At the depth of 2.3 m the electromagnetic component of cosmic ray showers is almost entirely absorbed so that the buried scintillators provide an independent and direct measurement of the air showers muon content. This work describes the design and implementation of the AMIGA embedded system, which provides centralized control, data acquisition and environment monitoring to its detectors. The presented system was firstly tested in the engineering array phase ended in 2017, and lately selected as the final design to be installed in all new detectors of the production phase. The system was proven to be robust and reliable and has worked in a stable manner since its first deployment
    corecore