718 research outputs found

    Incubation of solid state C<sub>60</sub> fullerene under UV irradiation mimicking environmentally relevant conditions

    Get PDF
    Carbon-based nanomaterials, such as C60 fullerenes, are expected to accumulate in soil due to direct release and deposition from the atmosphere. However, little is known about the environmental fate of these nanoparticles which may be susceptible to photochemical and microbial degradation. In the present work, C60 was incubated for a period of 28 days and irradiated with UVA light. Three experiments were carried out where the fullerenes were either spiked onto a glass surface or added to quartz sand or sandy soil samples. At specific time intervals the samples were extracted and analysed by liquid chromatography coupled to UV or high resolution mass spectrometric (HRMS) detection. The fullerenes were degraded in all the treatments and the decay followed a pseudo-first-order rate law. In absence of a solid matrix, the half-life (t1⁄2) of the C60 was 13.1 days, with an overall degradation of 45.1% that was accompanied by the formation of functionalized C60-like structures. Furthermore, mass spectrometric analysis highlighted the presence of a large number of transformation products that were not directly related to the irradiation and presented opened cage and oxidized structures. When C60 was spiked into solid matrices the degradation occurred at a faster rate (t1⁄2 of 4.5 and 0.8 days for quartz sand and sandy soil, respectively). Minor but consistent losses were found in the non-irradiated samples, presumably due to biotic or chemical processes occurring in these samples. The results of this study suggest that light-mediated transformation of the fullerenes will occur in the environment

    A novel sample preparation procedure for effect-directed analysis of micro-contaminants of emerging concern in surface waters

    Get PDF
    A novel sample preparation procedure relying on Solid Phase Extraction (SPE) combining different sorbent materials on a sequential-based cartridge was optimized and validated for the enrichment of 117 widely diverse contaminants of emerging concern (CECs) from surface waters (SW) and further combined chemical and biological analysis on subsequent extracts. A liquid chromatography coupled to high resolution tandem mass spectrometry LC-(HR)MS/MS protocol was optimized and validated for the quantitative analysis of organic CECs in SW extracts. A battery of in vitro CALUX bioassays for the assessment of endocrine, metabolic and genotoxic interference and oxidative stress were performed on the same SW extracts. Satisfactory recoveries ([70–130]%) and precision ( 0.99) over three orders of magnitude. Instrumental limits of detection and method limits of quantification were of [1–96] pg injected and [0.1–58] ng/L, respectively; while corresponding intra-day and inter-day precision did not exceed 11% and 20%. The developed procedure was successfully applied for the combined chemical and toxicological assessment of SW intended for drinking water supply. Levels of compounds varied from < 10 ng/L to < 500 ng/L. Endocrine (i.e. estrogenic and anti-androgenic) and metabolic interference responses were observed. Given the demonstrated reliability of the validated sample preparation method, the authors propose its integration in an effect-directed analysis procedure for a proper evaluation of SW quality and hazard assessment of CECs

    A method for the determination of fullerenes in soil and sediment matrices using ultra-high performance liquid chromatography coupled with heated electrospray quadrupole time of flight mass spectrometry

    Get PDF
    The increasing production of fullerenes likely means a release of these chemicals in the environment. Since soils and sediments are expected to act as a sink, analytical tools are needed to assess the presence of fullerenes in these matrices. In the present work, a method was developed for the determination of fullerenes at environmental relevant levels employing Ultra High Performance Liquid Chromatograph coupled with High Resolution Mass Spectrometry (UHPLC-HRMS). Chromatographic separation was achieved with a core–shell biphenyl stationary phase that provided fast analysis with complete baseline separation. Ion Booster Electro Spray Ionization (IB-ESI) resulted in higher ionization efficiency and was much less susceptible to adduct formation in comparison with standard ESI, whereas Quadrupole Time of Flight (QTOF) MS granted high resolution mass spectra used for accurate identification. The Instrumental method limits of detection (ILoD) and quantification (ILoQ) were 6 and 20 fg, respectively, for C60 and 12 and 39 fg, respectively, for C70. Matrix effects related to co-extractants were systematically investigated in soil and sediments extracts through standard addition method (SAM) and monitoring the signal response during the chromatographic run of these samples. Consequently, minor chromatographic modifications were necessary for the analysis of matrices with high organic carbon content. The method limit of detection (MLoD)ranged from 84 pg/kg to 335 pg/kg, whereas limit of quantification (MLoQ) ranged from 279 pg/kg to 1.1 ng/kg. Furthermore, the method was successfully applied for the analysis of functionalized fullerenes (i.e. methanofullerenes). To the best of our knowledge, this is the first analytical method for the analysis of fullerenes in soils and sediments that employ core–shell biphenyl stationary phase as well as IB-ESI-QTOF MS hyphenated with UHPLC

    Physical therapists’ perspectives of patient values and their place in clinical practice:a qualitative study

    Get PDF
    Background: In physical therapy practice patients and therapists exchange their perspectives on musculoskeletal health problems and their meaning for both of them. However, literature indicates that physical therapists find it difficult to enquire about the patients’ values during clinical encounters. Objectives: The aim of this study was to gain deeper insight into the perspectives of physical therapists about patient values. Design:Explorative qualitative focus group study. Method: Twenty-three physical therapists were interviewed in the Netherlands from March to May 2021. Two researchers analyzed the interviews and derived relevant codes. After an iterative process of comparing, analyzing, conceptualizing and discussing the codes, themes were identified through a thematic framework, illustrated with meaningful quotes. Results: Three major themes were identified: Humane, Tacit, and Responsive. It appeared that patient values play unconsciously a major role in daily practice and are associated with humanity, not technical or procedural aspects of the encounter. Responsive denotes that all values require interaction in which aligning with the individual patient forms the basis of treatment. Barriers for being responsive are identified as subthemes: Choices, Trust, Diverseness, and Boundaries. Conclusion: The concept of patient values appeared to be implicit. The professional intuitively attunes as a fellow human being to values and expectations of the individual patient. This study contributes to finding a balance and mutual reinforcement of implicit and explicit knowledge. With all found experiences and insights the concept of patient values became more explicit in physical therapy to create a framework for education and research in the future.</p

    Effects of high pressure and temperature conditions on the chemical fate of flowback water related chemicals

    Get PDF
    Environmental risk assessment is generally based on atmospheric conditions for the modelling of chemical fate after entering the environment. However, during hydraulic fracturing, chemicals may be released deep underground. This study therefore focuses on the effects of high pressure and high temperature conditions on chemicals in flowback water to determine whether current environmental fate models need to be adapted in the context of downhole activities. Crushed shale and flowback water were mixed and exposed to different temperature (25–100 °C) and pressure (1–450 bar) conditions to investigate the effects they have on chemical fate. Samples were analysed using LC-HRMS based non-target screening. The results show that both high temperature and pressure conditions can impact the chemical fate of hydraulic fracturing related chemicals by increasing or decreasing concentrations via processes of transformation, sorption, degradation and/or dissolution. Furthermore, the degree and direction of change is chemical specific. The change is lower or equal to a factor of five, but for a few individual compounds the degree of change can exceed this factor of five. This suggests that environmental fate models based on surface conditions may be used for an approximation of chemical fate under downhole conditions by applying an additional factor of five to account for these uncertainties. More accurate insight into chemical fate under downhole conditions may be gained by studying a fluid of known chemical composition and an increased variability in temperature and pressure conditions including concentration, salinity and pH as variables.</p

    Analysis of fullerenes in soils samples collected in The Netherlands

    Get PDF
    Fullerenes are carbon based nanoparticles that may enter the environment as a consequence of both natural processes and human activities. Although little is known about the presence of these chemicals in the environment, recent studies suggested that soil may act as a sink. The aim of the present work was to investigate the presence of fullerenes in soils collected in The Netherlands. Samples (n = 91) were taken from 6 locations and analyzed using a new developed LC-QTOF-MS method. The locations included highly trafficked and industrialized as well as urban and natural areas. In general, C60 was the most abundant fullerene found in the environment, detected in almost a half of the samples and at concentrations in the range of ng/kg. Other fullerenes such as C70 and an unknown structure containing a C60 cage were detected to a lower extent. The highest concentrations were found in the proximity of combustion sites such as a coal power plant and an incinerator, suggesting that the nanoparticles were unintentionally produced during combustions processes and reached the soil through atmospheric deposition. Consistent with other recent studies, these results show that fullerenes are widely present in the environment and that the main route for their entrance may be due to human activities. These data will be helpful in the understanding of the distribution of fullerenes in the environment and for the study of their behavior and fate in soil.</p

    Sustainable risk management of emerging contaminants in municipal wastewaters

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2009 The Royal Society.The presence of emerging contaminants in municipal wastewaters, particularly endocrine-disrupting compounds such as oestrogenic substances, has been the focus of much public concern and scientific attention in recent years. Due to the scientific uncertainty still surrounding their effects, the Precautionary Principle could be invoked for the interim management of potential risks. Therefore, precautionary prevention risk-management measures could be employed to reduce human exposure to the compounds of concern. Steroid oestrogens are generally recognized as the most significant oestrogenically active substances in domestic sewage effluent. As a result, the UK Environment Agency has championed a ‘Demonstration Programme’ to investigate the potential for removal of steroid oestrogens and alkylphenol ethoxylates during sewage treatment. Ecological and human health risks are interdependent, and ecological injuries may result in increased human exposures to contaminants or other stressors. In this context of limiting exposure to potential contaminants, examining the relative contribution of various compounds and pathways should be taken into account when identifying effective risk-management measures. In addition, the explicit use of ecological objectives within the scope of the implementation of the EU Water Framework Directive poses new challenges and necessitates the development of ecosystem-based decision tools. This paper addresses some of these issues and proposes a species sensitivity distribution approach to support the decision-making process related to the need and implications of sewage treatment work upgrade as risk-management measures to the presence of oestrogenic compounds in sewage effluent
    corecore