29,174 research outputs found

    Spin glass behavior in an interacting gamma-Fe2O3 nanoparticle system

    Get PDF
    In this paper we investigate the superspin glass behavior of a concentrated assembly of interacting maghemite nanoparticles and compare it to that of canonical atomic spin glass systems. ac versus temperature and frequency measurements show evidence of a superspin glass transition taking place at low temperature. In order to fully characterize the superspin glass phase, the aging behavior of both the thermo-remanent magnetization (TRM) and ac susceptibility has been investigated. It is shown that the scaling laws obeyed by superspin glasses and atomic spin glasses are essentially the same, after subtraction of a superparamagnetic contribution from the superspin glass response functions. Finally, we discuss a possible origin of this superparamagnetic contribution in terms of dilute spin glass models

    Cognition and Behavior in Two-Person Guessing Games: An Experimental Study

    Get PDF
    This paper reports experiments that elicit subjects' initial responses to 16 dominancesolvable two-person guessing games. The structure is publicly announced except for varying payoff parameters, to which subjects are given free access, game by game, through an interface that records their information searches. Varying the parameters allows strong separation of the behavior implied by leading decision rules and makes monitoring search a powerful tool for studying cognition. Many subjects' decisions and searches show clearly that they understand the games and seek to maximize their payoffs, but have boundedly rational models of others' decisions, which lead to systematic deviations from equilibrium.

    Cram\'er-Rao bounds for synchronization of rotations

    Full text link
    Synchronization of rotations is the problem of estimating a set of rotations R_i in SO(n), i = 1, ..., N, based on noisy measurements of relative rotations R_i R_j^T. This fundamental problem has found many recent applications, most importantly in structural biology. We provide a framework to study synchronization as estimation on Riemannian manifolds for arbitrary n under a large family of noise models. The noise models we address encompass zero-mean isotropic noise, and we develop tools for Gaussian-like as well as heavy-tail types of noise in particular. As a main contribution, we derive the Cram\'er-Rao bounds of synchronization, that is, lower-bounds on the variance of unbiased estimators. We find that these bounds are structured by the pseudoinverse of the measurement graph Laplacian, where edge weights are proportional to measurement quality. We leverage this to provide interpretation in terms of random walks and visualization tools for these bounds in both the anchored and anchor-free scenarios. Similar bounds previously established were limited to rotations in the plane and Gaussian-like noise

    An integrated database with system optimization and design features

    Get PDF
    A customized, mission-specific relational database package was developed to allow researchers working on the Mars oxygen manufacturing plant to enter physical description, engineering, and connectivity data through a uniform, graphical interface and to store the data in formats compatible with other software also developed as part of the project. These latter components include an optimization program to maximize or minimize various criteria as the system evolves into its final design; programs to simulate the behavior of various parts of the plant in Martian conditions; an animation program which, in different modes, provides visual feedback to designers and researchers about the location of and temperature distribution among components as well as heat, mass, and data flow through the plant as it operates in different scenarios; and a control program to investigate the stability and response of the system under different disturbance conditions. All components of the system are interconnected so that changes entered through one component are reflected in the others

    A Cation-π Interaction Discriminates among Sodium Channels That Are Either Sensitive or Resistant to Tetrodotoxin Block

    Get PDF
    Voltage-gated sodium channels control the upstroke of the action potential in excitable cells of nerve and muscle tissue, making them ideal targets for exogenous toxins that aim to squelch electrical excitability. One such toxin, tetrodotoxin (TTX), blocks sodium channels with nanomolar affinity only when an aromatic Phe or Tyr residue is present at a specific location in the external vestibule of the ion-conducting pore. To test whether TTX is attracted to Tyr401 of NaV1.4 through a cation-{pi} interaction, this aromatic residue was replaced with fluorinated derivatives of Phe using in vivo nonsense suppression. Consistent with a cation-{pi} interaction, increased fluorination of Phe401, which reduces the negative electrostatic potential on the aromatic face, caused a monotonic increase in the inhibitory constant for block. Trifluorination of the aromatic ring decreased TTX affinity by ~50-fold, a reduction similar to that caused by replacement with the comparably hydrophobic residue Leu. Furthermore, we show that an energetically equivalent cation-{pi} interaction underlies both use-dependent and tonic block by TTX. Our results are supported by high level ab initio quantum mechanical calculations applied to a model of TTX binding to benzene. Our analysis suggests that the aromatic side chain faces the permeation pathway where it orients TTX optimally and interacts with permeant ions. These results are the first of their kind to show the incorporation of unnatural amino acids into a voltage-gated sodium channel and demonstrate that a cation-{pi} interaction is responsible for the obligate nature of an aromatic at this position in TTX-sensitive sodium channels

    Direct Interactions in Relativistic Statistical Mechanics

    Get PDF
    Directly interacting particles are considered in the multitime formalism of predictive relativistic mechanics. When the equations of motion leave a phase-space volume invariant, it turns out that the phase average of any first integral, covariantly defined as a flux across a 7n7n-dimensional surface, is conserved. The Hamiltonian case is discussed, a class of simple models is exhibited, and a tentative definition of equilibrium is proposed.Comment: Plain Tex file, 26 page

    Liquid crystal phases of ultracold dipolar fermions on a lattice

    Full text link
    Motivated by the search for quantum liquid crystal phases in a gas of ultracold atoms and molecules, we study the density wave and nematic instabilities of dipolar fermions on the two-dimensional square lattice (in the xyx-y plane) with dipoles pointing to the zz direction. We determine the phase diagram using two complimentary methods, the Hatree-Fock mean field theory and the linear response analysis of compressibility. Both give consistent results. In addition to the staggered (π\pi, π\pi) density wave, over a finite range of densities and hopping parameters, the ground state of the system first becomes nematic and then smectic, when the dipolar interaction strength is increased. Both phases are characterized by the same broken four-fold (C4_4) rotational symmetry. The difference is that the nematic phase has a closed Fermi surface but the smectic does not. The transition from the nematic to the smectic phase is associated with a jump in the nematic order parameter. This jump is closely related to the van Hove singularities. We derive the kinetic equation for collective excitations in the normal isotropic phase and find that the zero sound mode is strongly Landau damped and thus is not a well defined excitation. Experimental implications of our results are discussed.Comment: 8 pages, 4 figures; Erratum added in the appendi
    corecore