1,992 research outputs found

    Survey of current Swiss pig feeding practices and potential for ammonia emission reduction

    Get PDF
    Controlling potentially harmful and polluting emissions from farms is important in the developed world, where legislation exists in many countries limiting emissions such as ammonia and controlling how manure is disposed of from intensive farming operations. In Switzerland, there are legal agreements concerning controls of ammonia emissions, most especially from farms. Ammonia production from pig farms can be controlled by dietary intervention, such as reducing protein levels, which in turn reduces excretion, mainly via urine. The following paper surveys current practices for nitrogen use on Swiss pig farms, and how feeding strategies may assist in controlling ammonia production from pig production systems. The survey found that 70-75% of all feeds used for pigs of all categories were reduced in protein and nitrogen, with 90% being reduced in protein in high animal density areas. Regression analysis showed that CP levels explained up to 49% of the nitrogen efficiency, suggesting that other factors are important in pollution control. Although piglet diets are more tightly regulated in terms of controlling N input, excessive protein levels in so-called reduced protein diets for finisher pigs and dry sows are common in the market. Hence, there is considerable potential to reduce N-input and ammonia emissions from Swiss pig production, which could be implemented at no or minimal extra cos

    Double-sided coaxial circuit QED with out-of-plane wiring

    Full text link
    Superconducting circuits are well established as a strong candidate platform for the development of quantum computing. In order to advance to a practically useful level, architectures are needed which combine arrays of many qubits with selective qubit control and readout, without compromising on coherence. Here we present a coaxial circuit QED architecture in which qubit and resonator are fabricated on opposing sides of a single chip, and control and readout wiring are provided by coaxial wiring running perpendicular to the chip plane. We present characterisation measurements of a fabricated device in good agreement with simulated parameters and demonstrating energy relaxation and dephasing times of T1=4.1 μT_1 = 4.1\,\mus and T2=5.7 μT_2 = 5.7\,\mus respectively. The architecture allows for scaling to large arrays of selectively controlled and measured qubits with the advantage of all wiring being out of the plane.Comment: 4 pages, 3 figures, 1 tabl

    Modelling Enclosures for Large-Scale Superconducting Quantum Circuits

    Full text link
    Superconducting quantum circuits are typically housed in conducting enclosures in order to control their electromagnetic environment. As devices grow in physical size, the electromagnetic modes of the enclosure come down in frequency and can introduce unwanted long-range cross-talk between distant elements of the enclosed circuit. Incorporating arrays of inductive shunts such as through-substrate vias or machined pillars can suppress these effects by raising these mode frequencies. Here, we derive simple, accurate models for the modes of enclosures that incorporate such inductive-shunt arrays. We use these models to predict that cavity-mediated inter-qubit couplings and drive-line cross-talk are exponentially suppressed with distance for arbitrarily large quantum circuits housed in such enclosures, indicating the promise of this approach for quantum computing. We find good agreement with a finite-element simulation of an example device containing more than 400 qubits.Comment: 6 pages + appendix, 6 figures in main text + 4 in appendi

    Process-based analysis of terrestrial carbon flux predictability

    Get PDF
    Despite efforts to decrease the discrepancy between simulated and observed terrestrial carbon fluxes, the uncertainty in trends and patterns of the land carbon fluxes remains high. This difficulty raises the question to what extent the terrestrial carbon cycle is predictable, and which processes explain the predictability. Here, the perfect model approach is used to assess the potential predictability of net primary production (NPPpred) and heterotrophic respiration (Rhpred) by using ensemble simulations conducted with the Max-Planck-Institute Earth System Model. In order to asses the role of local carbon flux predictability (CFpred) on the predictability of the global carbon cycle, we suggest a new predictability metric weighted by the amplitude of the flux anomalies. Regression analysis is used to determine the contribution of the predictability of different environmental drivers to NPPpred and Rhpred (soil moisture, air temperature and radiation for NPP and soil organic carbon, air temperature and precipitation for Rh). NPPpred is driven to 62 and 30 % by the predictability of soil moisture and temperature, respectively. Rhpred is driven to 52 and 27 % by the predictability of soil organic carbon temperature, respectively. The decomposition of predictability shows that the relatively high Rhpred compared to NPPpred is due to the generally high predictability of soil organic carbon. The seasonality in NPPpred and Rhpred patterns can be explained by the change in limiting factors over the wet and dry months. Consequently, CFpred is controlled by the predictability of the currently limiting environmental factor. Differences in CFpred between ensemble simulations can be attributed to the occurrence of wet and dry years, which influences the predictability of soil moisture and temperature. This variability of predictability is caused by the state dependency of ecosystem processes. Our results reveal the crucial regions and ecosystem processes to be considered when initializing a carbon prediction system

    The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks

    Get PDF
    The ability of different enteric pathogens and coliforms to trigger agglutination of yeast cells (Saccharomyces cerevisiae, NCYC 1026) and a yeast cell wall preparation (MOS) was examined. Five of seven strains of Escherichia coli and 7 of 10 strains of Salmonella typhimurium and Salmonella enteritidis agglutinated MOS and Sac. cerevisiae cells. Strains of Salmonella choleraesuis, Salmonella pullorum, and Campylobacter did not lead to agglutination. Two strains that agglutinated MOS (S. typhimurium 29E and Salmonella dublin) and one nonagglutinating strain (S. typhimurium 27A) were selected as challenge organisms for in vivo studies in chicks under controlled conditions. In a series of three trials in which 3-d-old chicks were orally challenged with 10(4) cfu of S. typhimurium 29E, birds receiving 4,000 ppm of dietary MOS had reduced cecal S. typhimurium 29E concentrations (5.40 vs 4.01 log cfu/ g; P < 0.05) at Day 10. In a second series of three trials with S. dublin as challenge organism, the number of birds that tested salmonella positive in the ceca at Day 10 was less when MOS was part of the diet (90 vs 56%; P < 0.05). To test the effect of MOS on concentrations of bacteria that do not express Type 1 fimbriae, a challenge trial was conducted with S. typhimurium 27A. However, strain 27A did not colonize the birds sufficiently to evaluate whether MOS affected its cecal concentration. Mannanoligosaccharide did not significantly reduce the concentrations of cecal coliforms (P < 0.10) although they were numerically lower. It had no effect on cecal concentrations of lactobacilli, enterococci, anaerobic bacteria, lactate, volatile fatty acid, or cecal p

    Effect of gut active carbohydrates on plasma IgG concentrations in piglets and calves

    Get PDF
    Improving immune status in neonates is crucial to health and production. Gut active carbohydrates (GAC) have been associated with increasing immunoglobin levels and immonucompetence development in mammals. The objective of the following studies was to evaluate whether GAC (mannan-oligosaccharides) applied orally to progeny immediately following parturition, improved blood plasma immunoglobulin (Ig) type G concentrations in piglets and calves. Three trials were conducted comparing control groups with those receiving GAC orally. The first two trials used piglets that were monitored for blood IgG at 2 days of age and for changes in body weight (BW), and the third trial monitored calf IgG from birth to 21 days of age. Piglets in the experimental group received 0.75 g GAC in 10 ml saline at birth and 24 h of age. The calf trial compared the control group against calves that received 22.5 g GAC mixed into 4.5 l of colostrum (to give 5 g/l) in the first 24 h after parturition. Blood serum samples were taken at 2 days post partum in piglets, and at several time points from 6 h to 21 days of age in calves, and were analysed for IgG levels by radial immunodiffusion. In the first piglet trial, significantly higher levels (32%) of IgG were observed for piglets fed GAC (P < 0.001), and in the second, IgG concentration was elevated by 23% (P < 0.01) and BW increased by 9% (P = 0.023) with GAC supplementation. Significant improvements for calves were recorded at all time points in those fed GAC (P < 0.05), with an increase in serum IgG observed after the first day, which was maintained throughout the sampling period, resulting in a difference of 39% at the end of the trial (21 d). These findings form a basis for further studies, which are required to investigate possible modes of action involved in enhancing blood immunoglobulin concentrations in young animals, and the longer-term effects this may have on the development of the immune respons

    A review of 733 published trials on Bio-Mos®, a mannan oligosaccharide, and Actigen®, a second generation mannose rich fraction, on farm and companion animals

    Get PDF
    Mannan-oligosaccharides (MOS), as zootechnical feed ingredients, are widely used in animal nutrition. MOS has been commercially available since the launch of Bio-Mos® in the early 1990's and has a substantial body of scientific papers and practical examples of its efficacy. Since 1999, the use of MOS in animal feed has become more prominent, mainly due to the European ban on prophylactic antibiotic growth promoters in animal feed. MOS, with its ability to bind and limit the colonisation of gut pathogens, has proven to be an effective solution for antibiotic-free diets, as well as providing support for immunity and digestion. MOS has been shown to improve gastrointestinal health, thus improving wellbeing, energy levels and performance. Most MOS products, particularly those that have been scientifically developed, derive from the cell wall of the yeast, Saccharomyces cerevisiae. In 2009, a mannose-rich fraction (MRF) product was commercially launched as a ‘second generation' of these MOS-type products, with enhanced activities in immune modulation and intestinal health. The purpose of this paper is to review the existing data on the benefits of MOS for all species of animals, discuss its mechanisms of action in vivo and compare the benefits of using second generation MRF to original MO

    Structural and Functional Characterization of Malate Synthase G from Opportunistic Pathogen Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is an opportunistic human pathogen recognized as a critical threat by the World Health Organization due to the dwindling number of effective therapies available to treat infections. Over the last decade, it has become apparent that the glyoxylate shunt plays a vital role in sustaining P. aeruginosa during infection scenarios. The glyoxylate shunt comprises two enzymes: isocitrate lyase and malate synthase isoform G. Inactivation of these enzymes has been reported to abolish the ability of P. aeruginosa to establish infection in a mammalian model system, yet we still lack the structural information to support drug design efforts. In this work, we describe the first X-ray crystal structure of P. aeruginosa malate synthase G in the apo form at 1.62 Å resolution. The enzyme is a monomer composed of four domains and is highly conserved with homologs found in other clinically-relevant microorganisms. It is also dependent on Mg2+ for catalysis. Metal ion binding led to a change in the intrinsic fluorescence of the protein, allowing us to quantitate its affinity for Mg2+. We also identified putative drug binding sites in malate synthase G using computational analysis and, because of the high resolution of the experimental data, were further able to characterize its hydration properties. Our data reveal two promising binding pockets in malate synthase G that may be exploited for drug design.This work was supported by the European Commission’s Horizon 2020 Grant 642620 to M.W. and A.P. and BBSRC Grant BB/M019411/1 to M.W

    Quantum teleportation on a photonic chip

    Full text link
    Quantum teleportation is a fundamental concept in quantum physics which now finds important applications at the heart of quantum technology including quantum relays, quantum repeaters and linear optics quantum computing (LOQC). Photonic implementations have largely focussed on achieving long distance teleportation due to its suitability for decoherence-free communication. Teleportation also plays a vital role in the scalability of photonic quantum computing, for which large linear optical networks will likely require an integrated architecture. Here we report the first demonstration of quantum teleportation in which all key parts - entanglement preparation, Bell-state analysis and quantum state tomography - are performed on a reconfigurable integrated photonic chip. We also show that a novel element-wise characterisation method is critical to mitigate component errors, a key technique which will become increasingly important as integrated circuits reach higher complexities necessary for quantum enhanced operation.Comment: Originally submitted version - refer to online journal for accepted manuscript; Nature Photonics (2014
    • …
    corecore