1,422 research outputs found

    Non-Pauli Transitions From Spacetime Noncommutativity

    Full text link
    There are good reasons to suspect that spacetime at Planck scales is noncommutative. Typically this noncommutativity is controlled by fixed "vectors" or "tensors" with numerical entries. For the Moyal spacetime, it is the antisymmetric matrix θμν\theta_{\mu\nu}. In approaches enforcing Poincar\'e invariance, these deform or twist the method of (anti-)symmetrization of identical particle state vectors. We argue that the earth's rotation and movements in the cosmos are "sudden" events to Pauli-forbidden processes. They induce (twisted) bosonic components in state vectors of identical spinorial particles in the presence of a twist. These components induce non-Pauli transitions. From known limits on such transitions, we infer that the energy scale for noncommutativity is 1024TeV\gtrsim 10^{24}\textrm{TeV}. This suggests a new energy scale beyond Planck scale.Comment: 11 pages, 1 table, Slightly revised for clarity

    Computational Modeling of Channelrhodopsin-2 Photocurrent Characteristics in Relation to Neural Signaling

    Full text link
    Channelrhodopsins-2 (ChR2) are a class of light sensitive proteins that offer the ability to use light stimulation to regulate neural activity with millisecond precision. In order to address the limitations in the efficacy of the wild-type ChR2 (ChRwt) to achieve this objective, new variants of ChR2 that exhibit fast mono-exponential photocurrent decay characteristics have been recently developed and validated. In this paper, we investigate whether the framework of transition rate model with 4 states, primarily developed to mimic the bi-exponential photocurrent decay kinetics of ChRwt, as opposed to the low complexity 3 state model, is warranted to mimic the mono-exponential photocurrent decay kinetics of the newly developed fast ChR2 variants: ChETA (Gunaydin et al., Nature Neurosci, 13:387-392, 2010) and ChRET/TC (Berndt et al., PNAS, 108:7595-7600, 2011). We begin by estimating the parameters for the 3-state and 4-state models from experimental data on the photocurrent kinetics of ChRwt, ChETA and ChRET/TC. We then incorporate these models into a fast-spiking interneuron model (Wang and Buzsaki., J Neurosci, 16:6402-6413,1996) and a hippocampal pyramidal cell model (Golomb et al., J Neurophysiol, 96:1912-1926, 2006) and investigate the extent to which the experimentally observed neural response to various optostimulation protocols can be captured by these models. We demonstrate that for all ChR2 variants investigated, the 4 state model implementation is better able to capture neural response consistent with experiments across wide range of optostimulation protocol. We conclude by analytically investigating the conditions under which the characteristic specific to the 3-state model, namely the mono-exponential photocurrent decay of the newly developed variants of ChR2, can occurs in the framework of the 4-state model.Comment: 10 figure

    A novel modulated phase of liquid crystals: Covariant elasticity in the context of soft, achiral smectic-C materials

    Full text link
    Ginzburg-Landau-de Gennes -type covariant theories are extensively used in connection with twist grain boundary (TGB) phases of chiral smectogens. We analyze the stability conditions for the linear, covariant elasticity theory of smectic-C liquid crystals in the context of achiral materials, and predict an equilibrium modulated structure with an oblique wavevector. We suggest that a previous experimental observation of stripes in smectic-C is consistent with the predicted structure.Comment: 4 pages, 3 figure

    Self-assembly of like-charged nanoparticles into microscopic crystals

    Get PDF
    Like-charged nanoparticles, NPs, can assemble in water into large, faceted crystals, each made of several million particles. These NPs are functionalized with mixed monolayers comprising ligands terminating in carboxylic acid group ligands as well as positively charged quaternary ammonium ligands. The latter groups give rise to electrostatic interparticle repulsions which partly offset the hydrogen bonding between the carboxylic acids. It is the balance between these two interactions that ultimately enables self-assembly. Depending on the pH, the particles can crystallize, form aggregates, remain unaggregated or even-in mixtures of two particle types-can choose whether to crystallize with like-charged or oppositely charged particles.open

    Self-assembly of like-charged nanoparticles into microscopic crystals

    Get PDF
    Like-charged nanoparticles, NPs, can assemble in water into large, faceted crystals, each made of several million particles. These NPs are functionalized with mixed monolayers comprising ligands terminating in carboxylic acid group ligands as well as positively charged quaternary ammonium ligands. The latter groups give rise to electrostatic interparticle repulsions which partly offset the hydrogen bonding between the carboxylic acids. It is the balance between these two interactions that ultimately enables self-assembly. Depending on the pH, the particles can crystallize, form aggregates, remain unaggregated or even-in mixtures of two particle types-can choose whether to crystallize with like-charged or oppositely charged particles.open

    Multipartite entanglement in fermionic systems via a geometric measure

    Full text link
    We study multipartite entanglement in a system consisting of indistinguishable fermions. Specifically, we have proposed a geometric entanglement measure for N spin-1/2 fermions distributed over 2L modes (single particle states). The measure is defined on the 2L qubit space isomorphic to the Fock space for 2L single particle states. This entanglement measure is defined for a given partition of 2L modes containing m >= 2 subsets. Thus this measure applies to m <= 2L partite fermionic system where L is any finite number, giving the number of sites. The Hilbert spaces associated with these subsets may have different dimensions. Further, we have defined the local quantum operations with respect to a given partition of modes. This definition is generic and unifies different ways of dividing a fermionic system into subsystems. We have shown, using a representative case, that the geometric measure is invariant under local unitaries corresponding to a given partition. We explicitly demonstrate the use of the measure to calculate multipartite entanglement in some correlated electron systems. To the best of our knowledge, there is no usable entanglement measure of m > 3 partite fermionic systems in the literature, so that this is the first measure of multipartite entanglement for fermionic systems going beyond the bipartite and tripartite cases.Comment: 25 pages, 8 figure

    Chiral symmetry breaking in three-dimensional smectic-C liquid-crystal domains

    Get PDF
    We report an observation of a unique type of spontaneous chiral symmetry breaking in three-dimensional domains of a smectic-C material consisting of achiral molecules. The observed helical structure clearly demonstrates the effect of an elastic coupling between the bend and the twist distortions in the c field. The sign and the magnitude of the coupling coefficient are determined experimentally. We also demonstrate that an external chiral bias field favors domains of one handedness

    Lehmann-Symanzik-Zimmermann S-Matrix elements on the Moyal Plane

    Full text link
    Field theories on the Groenewold-Moyal(GM) plane are studied using the Lehmann-Symanzik-Zimmermann(LSZ) formalism. The example of real scalar fields is treated in detail. The S-matrix elements in this non-perturbative approach are shown to be equal to the interaction representation S-matrix elements. This is a new non-trivial result: in both cases, the S-operator is independent of the noncommutative deformation parameter θμν\theta_{\mu\nu} and the change in scattering amplitudes due to noncommutativity is just a time delay. This result is verified in two different ways. But the off-shell Green's functions do depend on θμν\theta_{\mu\nu}. In the course of this analysis, unitarity of the non-perturbative S-matrix is proved as well.Comment: 18 pages, minor corrections, To appear in Phys. Rev. D, 201

    Disorder-free localisation in permutation symmetric fermionic quantum walks

    Full text link
    We investigate the phenomenon of disorder-free localisation in a quantum system with a global permutation symmetry and the exchange symmetry for identical particles. We start with a systematic construction of many-fermion Hamiltonians with a global permutation symmetry using the conjugacy classes of the permutation group SNS_N, with NN being the total number of fermions. The resulting Hamiltonians are interpreted as generators of continuous-time quantum walk of indistinguishable fermions. In this setup we analytically solve the simplest example and show that for large NN all the states are localised without the introduction of any disorder coefficients. The localisation is also time-independent and is not the result of any emergent disorder. This seems to be an important distinction from other mechanisms of disorder-free localisation. Furthermore, we show that the localisation is stable to interactions that preserve the global SNS_N symmetry making these systems potential candidates for a quantum memory. By marking sites and reducing the symmetry to subgroups of SNS_N, the localisation can be obtained for any NN by tuning the symmetry-reducing parameters in the Hamiltonian. Finally we show that similar localisation also occurs for spin systems governed by a SNS_N-symmetric Heisenberg chain and we make a few comments about SNS_N-symmetric bosonic systems. The models we propose feature all-to-all connectivity and can be realised on superconducting quantum circuits and trapped ion systems.Comment: 24 pages, 2 figures ; v2- 27 pages, 2 figures, slight modifications in the abstract and introductio
    corecore