121 research outputs found
NGC 1300 Dynamics: III. Orbital analysis
We present the orbital analysis of four response models, that succeed in
reproducing morphological features of NGC 1300. Two of them assume a planar
(2D) geometry with =22 and 16 \ksk respectively. The two others
assume a cylindrical (thick) disc and rotate with the same pattern speeds as
the 2D models. These response models reproduce most successfully main
morphological features of NGC 1300 among a large number of models, as became
evident in a previous study. Our main result is the discovery of three new
dynamical mechanisms that can support structures in a barred-spiral grand
design system. These mechanisms are presented in characteristic cases, where
these dynamical phenomena take place. They refer firstly to the support of a
strong bar, of ansae type, almost solely by chaotic orbits, then to the support
of spirals by chaotic orbits that for a certain number of pat tern revolutions
follow an n:1 (n=7,8) morphology, and finally to the support of spiral arms by
a combination of orbits trapped around L and sticky chaotic orbits with
the same Jacobi constant. We have encountered these dynamical phenomena in a
large fraction of the cases we studied as we varied the parameters of our
general models, without forcing in some way their appearance. This suggests
that they could be responsible for the observed morphologies of many
barred-spiral galaxies. Comparing our response models among themselves we find
that the NGC 130 0 morphology is best described by a thick disc model for the
bar region and a 2D disc model for the spirals, with both components rotating
with the same pattern speed =16 \ksk !. In such a case, the whole
structure is included inside the corotation of the system. The bar is supported
mainly by regular orbits, while the spirals are supported by chaotic orbits.Comment: 18 pages, 32 figures, accepted for publication in MNRA
Instabilities and stickiness in a 3D rotating galactic potential
We study the dynamics in the neighborhood of simple and double unstable
periodic orbits in a rotating 3D autonomous Hamiltonian system of galactic
type. In order to visualize the four dimensional spaces of section we use the
method of color and rotation. We investigate the structure of the invariant
manifolds that we found in the neighborhood of simple and double unstable
periodic orbits in the 4D spaces of section. We consider orbits in the
neighborhood of the families x1v2, belonging to the x1 tree, and the z-axis
(the rotational axis of our system). Close to the transition points from
stability to simple instability, in the neighborhood of the bifurcated simple
unstable x1v2 periodic orbits we encounter the phenomenon of stickiness as the
asymptotic curves of the unstable manifold surround regions of the phase space
occupied by rotational tori existing in the region. For larger energies, away
from the bifurcating point, the consequents of the chaotic orbits form clouds
of points with mixing of color in their 4D representations. In the case of
double instability, close to x1v2 orbits, we find clouds of points in the four
dimensional spaces of section. However, in some cases of double unstable
periodic orbits belonging to the z-axis family we can visualize the associated
unstable eigensurface. Chaotic orbits close to the periodic orbit remain sticky
to this surface for long times (of the order of a Hubble time or more). Among
the orbits we studied we found those close to the double unstable orbits of the
x1v2 family having the largest diffusion speed.Comment: 29pages, 25 figures, accepted for publication in the International
Journal of Bifurcation and Chao
NGC 1300 Dynamics: II. The response models
We study the stellar response in a spectrum of potentials describing the
barred spiral galaxy NGC 1300. These potentials have been presented in a
previous paper and correspond to three different assumptions as regards the
geometry of the galaxy. For each potential we consider a wide range of
pattern speed values. Our goal is to discover the geometries and the
supporting specific morphological features of NGC 1300. For this
purpose we use the method of response models. In order to compare the images of
NGC 1300 with the density maps of our models, we define a new index which is a
generalization of the Hausdorff distance. This index helps us to find out
quantitatively which cases reproduce specific features of NGC 1300 in an
objective way. Furthermore, we construct alternative models following a
Schwarzschild type technique. By this method we vary the weights of the various
energy levels, and thus the orbital contribution of each energy, in order to
minimize the differences between the response density and that deduced from the
surface density of the galaxy, under certain assumptions. We find that the
models corresponding to \ksk and \ksk are
able to reproduce efficiently certain morphological features of NGC 1300, with
each one having its advantages and drawbacks.Comment: 13 pages, 10 figures, accepted for publication in MNRA
Chains of rotational tori and filamentary structures close to high multiplicity periodic orbits in a 3D galactic potential
This paper discusses phase space structures encountered in the neighborhood
of periodic orbits with high order multiplicity in a 3D autonomous Hamiltonian
system with a potential of galactic type. We consider 4D spaces of section and
we use the method of color and rotation [Patsis and Zachilas 1994] in order to
visualize them. As examples we use the case of two orbits, one 2-periodic and
one 7-periodic. We investigate the structure of multiple tori around them in
the 4D surface of section and in addition we study the orbital behavior in the
neighborhood of the corresponding simple unstable periodic orbits. By
considering initially a few consequents in the neighborhood of the orbits in
both cases we find a structure in the space of section, which is in direct
correspondence with what is observed in a resonance zone of a 2D autonomous
Hamiltonian system. However, in our 3D case we have instead of stability
islands rotational tori, while the chaotic zone connecting the points of the
unstable periodic orbit is replaced by filaments extending in 4D following a
smooth color variation. For more intersections, the consequents of the orbit
which started in the neighborhood of the unstable periodic orbit, diffuse in
phase space and form a cloud that occupies a large volume surrounding the
region containing the rotational tori. In this cloud the colors of the points
are mixed. The same structures have been observed in the neighborhood of all
m-periodic orbits we have examined in the system. This indicates a generic
behavior.Comment: 12 pages,22 figures, Accepted for publication in the International
Journal of Bifurcation and Chao
Particle Swarm Optimization: An efficient method for tracing periodic orbits in 3D galactic potentials
We propose the Particle Swarm Optimization (PSO) as an alternative method for
locating periodic orbits in a three--dimensional (3D) model of barred galaxies.
We develop an appropriate scheme that transforms the problem of finding
periodic orbits into the problem of detecting global minimizers of a function,
which is defined on the Poincar\'{e} Surface of Section (PSS) of the
Hamiltonian system. By combining the PSO method with deflection techniques, we
succeeded in tracing systematically several periodic orbits of the system. The
method succeeded in tracing the initial conditions of periodic orbits in cases
where Newton iterative techniques had difficulties. In particular, we found
families of 2D and 3D periodic orbits associated with the inner 8:1 to 12:1
resonances, between the radial 4:1 and corotation resonances of our 3D Ferrers
bar model. The main advantages of the proposed algorithm is its simplicity, its
ability to work using function values solely, as well as its ability to locate
many periodic orbits per run at a given Jacobian constant.Comment: 12 pages, 8 figures, accepted for publication in MNRA
Dark matter within high surface brightness spiral galaxies
We present results from a detailed dynamical analysis of five high surface
brightness, late type spirals, studied with the aim to quantify the
luminous-to-dark matter ratio inside their optical radii. The galaxies' stellar
light distribution and gas kinematics have been observed and compared to
hydrodynamic gas simulations, which predict the 2D gas dynamics arising in
response to empirical gravitational potentials, which are combinations of
differing stellar disk and dark halo contributions. The gravitational potential
of the stellar disk was derived from near-infrared photometry, color-corrected
to constant (M/L); the dark halo was modelled by an isothermal sphere with a
core. Hydrodynamic gas simulations were performed for each galaxy for a
sequence of five different mass fractions of the stellar disk and for a wide
range of spiral pattern speeds. These two parameters mainly determine the
modelled gas distribution and kinematics. The agreement between the
non-axisymmetric part of the simulated and observed gas kinematics permitted us
to conclude that the galaxies with the highest rotation velocities tend to
possess near-maximal stellar disks. In less massive galaxies, with v_max<200
km/s, the mass of the dark halo at least equals the stellar mass within 2-3
R_disk. The simulated gas morphology provides a powerful tool to determine the
dominant spiral pattern speed. The corotation radius for all galaxies was found
to be constant at R_corotation ~ 3 R_disk and encloses the strong part of the
stellar spiral in all cases.Comment: 28 pages, 7 figures; to appear in the Astrophysical Journal, Vol.
586, March 200
- âŠ