8,010 research outputs found
Solar Atmospheric Oscillations and the Chromospheric Magnetic Topology
We investigate the oscillatory properties of the quiet solar chromosphere in
relation to the underlying photosphere, with particular regard to the effects
of the magnetic topology. We perform a Fourier analysis on a sequence of
line-of-sight velocities measured simultaneously in a photospheric (Fe I 709.0
nm) and a chromospheric line (Ca II 854.2 nm). The velocities were obtained
from full spectroscopic data acquired at high spatial resolution with the
Interferometric BIdimensional Spectrometer (IBIS). The field of view
encompasses a full supergranular cell, allowing us to discriminate between
areas with different magnetic characteristics. We show that waves with
frequencies above the acoustic cut-off propagate from the photosphere to upper
layers only in restricted areas of the quiet Sun. A large fraction of the quiet
chromosphere is in fact occupied by ``magnetic shadows'', surrounding network
regions, that we identify as originating from fibril-like structures observed
in the core intensity of the Ca II line. We show that a large fraction of the
chromospheric acoustic power at frequencies below the acoustic cut-off,
residing in the proximity of the magnetic network elements, directly propagates
from the underlying photosphere. This supports recent results arguing that
network magnetic elements can channel low-frequency photospheric oscillations
into the chromosphere, thus providing a way to input mechanical energy in the
upper layers.Comment: 4 pages, 3 figure, A&A Letters in pres
The Kato square root problem on vector bundles with generalised bounded geometry
We consider smooth, complete Riemannian manifolds which are exponentially
locally doubling. Under a uniform Ricci curvature bound and a uniform lower
bound on injectivity radius, we prove a Kato square root estimate for certain
coercive operators over the bundle of finite rank tensors. These results are
obtained as a special case of similar estimates on smooth vector bundles
satisfying a criterion which we call generalised bounded geometry. We prove
this by establishing quadratic estimates for perturbations of Dirac type
operators on such bundles under an appropriate set of assumptions.Comment: Slight technical modification of the notion of "GBG constant section"
on page 7, and a few technical modifications to Proposition 8.4, 8.6, 8.
Two-fluid matter-quintessence FLRW models: energy transfer and the equation of state of the universe
Recent observations support the view that the universe is described by a FLRW
model with , , and at the present epoch. There are several theoretical suggestions for
the cosmological component and for the particular form of the energy
transfer between this dark energy and matter. This gives a strong motive for a
systematic study of general properties of two-fluid FLRW models. We consider a
combination of one perfect fluid, which is quintessence with negative pressure
(), and another perfect fluid, which is a mixture of
radiation and/or matter components with positive pressure (), which define the associated one-fluid model (). We introduce a useful classification which contains 4 classes of
models defined by the presence or absence of energy transfer and by the
stationarity ( and ) or/and non stationarity (
or time dependent) of the equations of state. It is shown that, for
given and , the energy transfer defines and, therefore, the
total gravitating mass and dynamics of the model. We study important examples
of two-fluid FLRW models within the new classification. The behaviour of the
energy content, gravitating mass, pressure, and the energy transfer are given
as functions of the scale factor. We point out three characteristic scales,
, and , which separate periods of time in which
quintessence energy, pressure and gravitating mass dominate. Each sequence of
the scales defines one of 6 evolution types
Critiquing Variational Theories of the Anderson-Hubbard Model: Real-Space Self-Consistent Hartree-Fock Solutions
A simple and commonly employed approximate technique with which one can
examine spatially disordered systems when strong electronic correlations are
present is based on the use of real-space unrestricted self-consistent
Hartree-Fock wave functions. In such an approach the disorder is treated
exactly while the correlations are treated approximately. In this report we
critique the success of this approximation by making comparisons between such
solutions and the exact wave functions for the Anderson-Hubbard model. Due to
the sizes of the complete Hilbert spaces for these problems, the comparisons
are restricted to small one-dimensional chains, up to ten sites, and a 4x4
two-dimensional cluster, and at 1/2 filling these Hilbert spaces contain about
63,500 and 166 million states, respectively. We have completed these
calculations both at and away from 1/2 filling. This approximation is based on
a variational approach which minimizes the Hartree-Fock energy, and we have
completed comparisons of the exact and Hartree-Fock energies. However, in order
to assess the success of this approximation in reproducing ground-state
correlations we have completed comparisons of the local charge and spin
correlations, including the calculation of the overlap of the Hartree-Fock wave
functions with those of the exact solutions. We find that this approximation
reproduces the local charge densities to quite a high accuracy, but that the
local spin correlations, as represented by , are not as well
represented. In addition to these comparisons, we discuss the properties of the
spin degrees of freedom in the HF approximation, and where in the
disorder-interaction phase diagram such physics may be important
The U-band Galaxy Luminosity Function of Nearby Clusters
Despite the great potential of the U-band galaxy luminosity function (GLF) to
constrain the history of star formation in clusters, to clarify the question of
variations of the GLF across filter bands, to provide a baseline for
comparisons to high-redshift studies of the cluster GLF, and to estimate the
contribution of bound systems of galaxies to the extragalactic near-UV
background, determinations have so far been hampered by the generally low
efficiency of detectors in the U-band and by the difficulty of constructing
both deep and wide surveys. In this paper, we present U-band GLFs of three
nearby, rich clusters to a limit of M_U=-17.5 (M*_U+2). Our analysis is based
on a combination of separate spectroscopic and R-band and U-band photometric
surveys. For this purpose, we have developed a new maximum-likelihood algorithm
for calculating the luminosity function that is particularly useful for
reconstructing the galaxy distribution function in multi-dimensional spaces
(e.g., the number of galaxies as a simultaneous function of luminosity in
different filter bands, surface brightness, star formation rate, morphology,
etc.), because it requires no prior assumptions as to the shape of the
distribution function.
The composite luminosity function can be described by a Schechter function
with characteristic magnitude M*_U=-19.82+/-0.27 and faint end slope
alpha_U=-1.09+/-0.18. The total U-band GLF is slightly steeper than the R-band
GLF, indicating that cluster galaxies are bluer at fainter magnitudes.
Quiescent galaxies dominate the cumulative U-band flux for M_U<-14. The
contribution of galaxies in nearby clusters to the U-band extragalactic
background is <1% Gyr^-1 for clusters of masses ~3*10^14 to 2*10^15 M_solar.Comment: 44 pages, 11 figures, accepted for publication in Ap
Experimental determination of the quasi-projectile mass with measured neutrons
The investigation of the isospin dependence of multifragmentation reactions
relies on precise reconstruction of the fragmenting source. The criteria used
to assign free emitted neutrons, detected with the TAMU Neutron Ball, to the
quasi-projectile source are investigated in the framework of two different
simulation codes. Overall and source-specific detection efficiencies for
multifragmentation events are found to be model independent. The equivalence of
the two different methods used to assign experimentally detected charged
particles and neutrons to the emitting source is shown. The method used
experimentally to determine quasi-projectile emitted free neutron multiplicity
is found to be reasonably accurate and sufficiently precise as to allow for the
study of well-defined quasi-projectile sources.Comment: 10 pages, 8 figures. To be submitted to Nucl. Instr. and Meth.
Millimeter Wave Localization: Slow Light and Enhanced Absorption
We exploit millimeter wave technology to measure the reflection and
transmission response of random dielectric media. Our samples are easily
constructed from random stacks of identical, sub-wavelength quartz and Teflon
wafers. The measurement allows us to observe the characteristic transmission
resonances associated with localization. We show that these resonances give
rise to enhanced attenuation even though the attenuation of homogeneous quartz
and Teflon is quite low. We provide experimental evidence of disorder-induced
slow light and superluminal group velocities, which, in contrast to photonic
crystals, are not associated with any periodicity in the system. Furthermore,
we observe localization even though the sample is only about four times the
localization length, interpreting our data in terms of an effective cavity
model. An algorithm for the retrieval of the internal parameters of random
samples (localization length and average absorption rate) from the external
measurements of the reflection and transmission coefficients is presented and
applied to a particular random sample. The retrieved value of the absorption is
in agreement with the directly measured value within the accuracy of the
experiment.Comment: revised and expande
- …