9,298 research outputs found

    Real-time Measurement of Stress and Damage Evolution During Initial Lithiation of Crystalline Silicon

    Full text link
    Crystalline to amorphous phase transformation during initial lithiation in (100) silicon-wafers is studied in an electrochemical cell with lithium metal as the counter and reference electrode. It is demonstrated that severe stress jumps across the phase boundary lead to fracture and damage, which is an essential consideration in designing silicon based anodes for lithium ion batteries. During initial lithiation, a moving phase boundary advances into the wafer starting from the surface facing the lithium electrode, transforming crystalline silicon into amorphous LixSi. The resulting biaxial compressive stress in the amorphous layer is measured in situ and it was observed to be ca. 0.5 GPa. HRTEM images reveal that the crystalline-amorphous phase boundary is very sharp, with a thickness of ~ 1 nm. Upon delithiation, the stress rapidly reverses, becomes tensile and the amorphous layer begins to deform plastically at around 0.5 GPa. With continued delithiation, the yield stress increases in magnitude, culminating in sudden fracture of the amorphous layer into micro-fragments and the cracks extend into the underlying crystalline silicon.Comment: 12 pages, 5 figure

    Strong low-frequency quantum correlations from a four-wave mixing amplifier

    Full text link
    We show that a simple scheme based on nondegenerate four-wave mixing in a hot atomic vapor behaves like a near-perfect phase-insensitive optical amplifier, which can generate bright twin beams with a measured quantum noise reduction in the intensity difference of more than 8 dB, close to the best optical parametric amplifiers and oscillators. The absence of a cavity makes the system immune to external perturbations, and the strong quantum noise reduction is observed over a large frequency range.Comment: 4 pages, 4 figures. Major rewrite of the previous version. New experimental results and further analysi

    Human Apolipoprotein B Transgenic Mice Generated with 207- and 145-Kilobase Pair Bacterial Artificial Chromosomes. Evidence that a distant 5'-element confers appropriate transgene expression in the intestine

    Get PDF
    We reported previously that ~80-kilobase pair (kb) P1 bacteriophage clones spanning either the human or mouse apoB gene (clones p158 and p649, respectively) confer apoB expression in the liver of transgenic mice, but not in the intestine. We hypothesized that the absence of intestinal expression was due to the fact that these clones lacked a distant DNA element controlling intestinal expression. To test this possibility, transgenic mice were generated with 145- and 207-kb bacterial artificial chromosomes (BACs) that contained the human apoB gene and more extensive 5'- and 3'-flanking sequences. RNase protection, in situ hybridization, immunohistochemical, and genetic complementation studies revealed that the BAC transgenic mice manifested appropriate apoB gene expression in both the intestine and the liver, indicating that both BACs contained the distant intestinal element. To determine whether the regulatory element was located 5' or 3' to the apoB gene, transgenic mice were generated by co-microinjecting embryos with p158 and either the 5'- or 3'-sequences from the 145-kb BAC. Analysis of these mice indicated that the apoB gene's intestinal element is located 5' to the structural gene. Cumulatively, the transgenic mouse studies suggest that the intestinal element is located between -33 and -70 kb 5' to the apoB gene

    Trends in stratospheric minor constituents

    Get PDF
    Photochemical models predict that increasing source gas concentrations are also expected to lead to changes in the concentrations of both catalytically active radical species (such as NO2, ClO, and OH) and inactive reservoir species (such as HNO3, HCl, and H2O). For simplicity, we will refer to all these as trace species. Those species that are expected to have increasing concentration levels are investigated. Additionally, the trace species concentration levels are monitored for unexpected changes on the basis of the measure increase in source gases. Carrying out these investigations is difficult due to the limited data base of measurements of stratospheric trace species. In situ measurements are made only infrequently, and there are few satelliteborne measurements, most over a time space insufficient for trend determination. Instead, ground-based measurements of column content must be used for many species, and interpretation is complicated by contributions from the troposphere or mesosphere or both. In this chapter, we examine existing measurements as published or tabulated

    Silicon materials task of the low cost solar array project. Phase 3: Effect of impurities and processing on silicon solar cells

    Get PDF
    The 13th quarterly report of a study entitled an Investigation of the Effects of Impurities and Processing on Silicon Solar Cells is given. The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions on the performance of terrestrial silicon solar cells. The Phase 3 program effort falls in five areas: (1) cell processing studies; (2) completion of the data base and impurity-performance modeling for n-base cells; (3) extension of p-base studies to include contaminants likely to be introduced during silicon production, refining or crystal growth; (4) anisotropy effects; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells. The quarterly activities for this report focus on tasks (1), (3) and (4)

    Natural Cycles, Gases

    Get PDF
    The major gaseous components of the exhaust of stratospheric aircraft are expected to be the products of combustion (CO2 and H2O), odd nitrogen (NO, NO2 HNO3), and products indicating combustion inefficiencies (CO and total unburned hydrocarbons). The species distributions are produced by a balance of photochemical and transport processes. A necessary element in evaluating the impact of aircraft exhaust on the lower stratospheric composition is to place the aircraft emissions in perspective within the natural cycles of stratospheric species. Following are a description of mass transport in the lower stratosphere and a discussion of the natural behavior of the major gaseous components of the stratospheric aircraft exhaust

    Polar ozone

    Get PDF
    The observation and interpretation of a large, unexpected ozone depletion over Antarctica has changed the international scientific view of stratospheric chemistry. The observations which show the veracity, seasonal nature, and vertical structure of the Antarctic ozone hole are presented. Evidence for Arctic and midlatitude ozone loss is also discussed. The chemical theory for Antarctic ozone depletion centers around the occurrence of polar stratospheric clouds (PSCs) in Antarctic winter and spring; the climatology and radiative properties of these clouds are presented. Lab studies of the physical properties of PSCs and the chemical processes that subsequently influence ozone depletion are discussed. Observations and interpretation of the chemical composition of the Antarctic stratosphere are described. It is shown that the observed, greatly enhanced abundances of chlorine monoxide in the lower stratosphere are sufficient to explain much if not all of the ozone decrease. The dynamic meteorology of both polar regions is given, interannual and interhemispheric variations in dynamical processes are outlined, and their likely roles in ozone loss are discussed

    Resolving singular forces in cavity flow: Multiscale modeling from atoms to millimeters

    Full text link
    A multiscale approach for fluid flow is developed that retains an atomistic description in key regions. The method is applied to a classic problem where all scales contribute: The force on a moving wall bounding a fluid-filled cavity. Continuum equations predict an infinite force due to stress singularities. Following the stress over more than six decades in length in systems with characteristic scales of millimeters and milliseconds allows us to resolve the singularities and determine the force for the first time. The speedup over pure atomistic calculations is more than fourteen orders of magnitude. We find a universal dependence on the macroscopic Reynolds number, and large atomistic effects that depend on wall velocity and interactions.Comment: 4 pages,3 figure
    corecore