4,105 research outputs found
The averaged characteristic polynomial for the Gaussian and chiral Gaussian ensembles with a source
In classical random matrix theory the Gaussian and chiral Gaussian random
matrix models with a source are realized as shifted mean Gaussian, and chiral
Gaussian, random matrices with real , complex ( and
real quaternion ) elements. We use the Dyson Brownian motion model
to give a meaning for general . In the Gaussian case a further
construction valid for is given, as the eigenvalue PDF of a
recursively defined random matrix ensemble. In the case of real or complex
elements, a combinatorial argument is used to compute the averaged
characteristic polynomial. The resulting functional forms are shown to be a
special cases of duality formulas due to Desrosiers. New derivations of the
general case of Desrosiers' dualities are given. A soft edge scaling limit of
the averaged characteristic polynomial is identified, and an explicit
evaluation in terms of so-called incomplete Airy functions is obtained.Comment: 21 page
Growth models, random matrices and Painleve transcendents
The Hammersley process relates to the statistical properties of the maximum
length of all up/right paths connecting random points of a given density in the
unit square from (0,0) to (1,1). This process can also be interpreted in terms
of the height of the polynuclear growth model, or the length of the longest
increasing subsequence in a random permutation. The cumulative distribution of
the longest path length can be written in terms of an average over the unitary
group. Versions of the Hammersley process in which the points are constrained
to have certain symmetries of the square allow similar formulas. The derivation
of these formulas is reviewed. Generalizing the original model to have point
sources along two boundaries of the square, and appropriately scaling the
parameters gives a model in the KPZ universality class. Following works of Baik
and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled
cumulative distribution, in which a particular Painlev\'e II transcendent plays
a prominent role.Comment: 27 pages, 5 figure
Increasing subsequences and the hard-to-soft edge transition in matrix ensembles
Our interest is in the cumulative probabilities Pr(L(t) \le l) for the
maximum length of increasing subsequences in Poissonized ensembles of random
permutations, random fixed point free involutions and reversed random fixed
point free involutions. It is shown that these probabilities are equal to the
hard edge gap probability for matrix ensembles with unitary, orthogonal and
symplectic symmetry respectively. The gap probabilities can be written as a sum
over correlations for certain determinantal point processes. From these
expressions a proof can be given that the limiting form of Pr(L(t) \le l) in
the three cases is equal to the soft edge gap probability for matrix ensembles
with unitary, orthogonal and symplectic symmetry respectively, thereby
reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page
Correlations in two-component log-gas systems
A systematic study of the properties of particle and charge correlation
functions in the two-dimensional Coulomb gas confined to a one-dimensional
domain is undertaken. Two versions of this system are considered: one in which
the positive and negative charges are constrained to alternate in sign along
the line, and the other where there is no charge ordering constraint. Both
systems undergo a zero-density Kosterlitz-Thouless type transition as the
dimensionless coupling is varied through . In
the charge ordered system we use a perturbation technique to establish an
decay of the two-body correlations in the high temperature limit.
For , the low-fugacity expansion of the asymptotic
charge-charge correlation can be resummed to all orders in the fugacity. The
resummation leads to the Kosterlitz renormalization equations.Comment: 39 pages, 5 figures not included, Latex, to appear J. Stat. Phys.
Shortened version of abstract belo
Random walks and random fixed-point free involutions
A bijection is given between fixed point free involutions of
with maximum decreasing subsequence size and two classes of vicious
(non-intersecting) random walker configurations confined to the half line
lattice points . In one class of walker configurations the maximum
displacement of the right most walker is . Because the scaled distribution
of the maximum decreasing subsequence size is known to be in the soft edge GOE
(random real symmetric matrices) universality class, the same holds true for
the scaled distribution of the maximum displacement of the right most walker.Comment: 10 page
Random Matrix Theory and the Sixth Painlev\'e Equation
A feature of certain ensembles of random matrices is that the corresponding
measure is invariant under conjugation by unitary matrices. Study of such
ensembles realised by matrices with Gaussian entries leads to statistical
quantities related to the eigenspectrum, such as the distribution of the
largest eigenvalue, which can be expressed as multidimensional integrals or
equivalently as determinants. These distributions are well known to be
-functions for Painlev\'e systems, allowing for the former to be
characterised as the solution of certain nonlinear equations. We consider the
random matrix ensembles for which the nonlinear equation is the form
of \PVI. Known results are reviewed, as is their implication by way of series
expansions for the distributions. New results are given for the boundary
conditions in the neighbourhood of the fixed singularities at of
\PVI displayed by a generalisation of the generating function for the
distributions. The structure of these expansions is related to Jimbo's general
expansions for the -function of \PVI in the neighbourhood of its
fixed singularities, and this theory is itself put in its context of the linear
isomonodromy problem relating to \PVI.Comment: Dedicated to the centenary of the publication of the Painlev\'e VI
equation in the Comptes Rendus de l'Academie des Sciences de Paris by Richard
Fuchs in 190
{\bf -Function Evaluation of Gap Probabilities in Orthogonal and Symplectic Matrix Ensembles}
It has recently been emphasized that all known exact evaluations of gap
probabilities for classical unitary matrix ensembles are in fact
-functions for certain Painlev\'e systems. We show that all exact
evaluations of gap probabilities for classical orthogonal matrix ensembles,
either known or derivable from the existing literature, are likewise
-functions for certain Painlev\'e systems. In the case of symplectic
matrix ensembles all exact evaluations, either known or derivable from the
existing literature, are identified as the mean of two -functions, both
of which correspond to Hamiltonians satisfying the same differential equation,
differing only in the boundary condition. Furthermore the product of these two
-functions gives the gap probability in the corresponding unitary
symmetry case, while one of those -functions is the gap probability in
the corresponding orthogonal symmetry case.Comment: AMS-Late
Hypergeometric solutions to the q-Painlev\'e equation of type
We consider the q-Painlev\'e equation of type (a version of
q-Painlev\'e V equation) and construct a family of solutions expressible in
terms of certain basic hypergeometric series. We also present the determinant
formula for the solutions.Comment: 16 pages, IOP styl
A Combinatorial Interpretation of the Free Fermion Condition of the Six-Vertex Model
The free fermion condition of the six-vertex model provides a 5 parameter
sub-manifold on which the Bethe Ansatz equations for the wavenumbers that enter
into the eigenfunctions of the transfer matrices of the model decouple, hence
allowing explicit solutions. Such conditions arose originally in early
field-theoretic S-matrix approaches. Here we provide a combinatorial
explanation for the condition in terms of a generalised Gessel-Viennot
involution. By doing so we extend the use of the Gessel-Viennot theorem,
originally devised for non-intersecting walks only, to a special weighted type
of \emph{intersecting} walk, and hence express the partition function of
such walks starting and finishing at fixed endpoints in terms of the single
walk partition functions
- …