51 research outputs found

    Tiered social distancing policies and epidemic control

    Get PDF
    Tiered social distancing policies have been adopted by many governments to mitigate the harmful consequences of COVID-19. Such policies have a number of well-established features, i.e. they are short-term, adaptive (to the changing epidemiological conditions), and based on a multiplicity of indicators of the prevailing epidemic activity. Here, we use ideas from Behavioural Epidemiology to represent tiered policies in an SEIRS model by using a composite information index including multiple indicators of current and past epidemic activity mimicking those used by governments during the COVID-19 pandemic, such as transmission intensity, infection incidence and hospitals’ occupancy. In its turn, the dynamics of the information index is assumed to endogenously inform the governmental social distancing interventions. The resulting model is described by a hereditary system showing a noteworthy property, i.e. a dependency of the endemic levels of epidemiological variables from initial conditions. This is a consequence of the need to normalize the different indicators to pool them into a single index. Simulations suggest a rich spectrum of possible results. These include policy suggestions and identify pitfalls and undesired outcomes, such as a worsening of epidemic control, that can arise following such types of approaches to epidemic responses

    Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

    Full text link
    We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of graphs called path-complete graphs, and show that any such graph gives rise to a method for proving stability of the switched system. This enables us to derive several asymptotically tight hierarchies of semidefinite programming relaxations that unify and generalize many existing techniques such as common quadratic, common sum of squares, and maximum/minimum-of-quadratics Lyapunov functions. We compare the quality of approximation obtained by certain classes of path-complete graphs including a family of dual graphs and all path-complete graphs with two nodes on an alphabet of two matrices. We provide approximation guarantees for several families of path-complete graphs, such as the De Bruijn graphs, establishing as a byproduct a constructive converse Lyapunov theorem for maximum/minimum-of-quadratics Lyapunov functions.Comment: To appear in SIAM Journal on Control and Optimization. Version 2 has gone through two major rounds of revision. In particular, a section on the performance of our algorithm on application-motivated problems has been added and a more comprehensive literature review is presente

    Detectability subspaces and observer synthesis for two-dimensional systems

    Get PDF
    The notions of input-containing and detectability subspaces are developed within the context of observer synthesis for two-dimensional (2-D) Fornasini-Marchesini models. Specifically, the paper considers observers which asymptotically estimate the local state, in the sense that the error tends to zero as the reconstructed local state evolves away from possibly mismatched boundary values, modulo a detectability subspace. Ultimately, the synthesis of such observers in the absence of explicit input information is addressed

    A review of friction models in interacting joints for durability design.

    Get PDF
    This paper presents a comprehensive review of friction modelling to provide an understanding of design for durability within interacting systems. Friction is a complex phenomenon and occurs at the interface of two components in relative motion. Over the last several decades, the effects of friction and its modelling techniques have been of significant interests in terms of industrial applications. There is however a need to develop a unified mathematical model for friction to inform design for durability within the context of varying operational conditions. Classical dynamic mechanisms model for the design of control systems has not incorporated friction phenomena due to non-linearity behaviour. Therefore, the tribological performance concurrently with the joint dynamics of a manipulator joint applied in hazardous environments needs to be fully analysed. Previously the dynamics and impact models used in mechanical joints with clearance have also been examined. The inclusion of reliability and durability during the design phase is very important for manipulators which are deployed in harsh environmental and operational conditions. The revolute joint is susceptible to failures such as in heavy manipulators these revolute joints can be represented by lubricated conformal sliding surfaces. The presence of pollutants such as debris and corrosive constituents has the potential to alter the contacting surfaces, would in turn affect the performance of revolute joints, and puts both reliability and durability of the systems at greater risks of failure. Key literature is identified and a review on the latest developments of the science of friction modelling is presented here. This review is based on a large volume of knowledge. Gaps in the relevant field have been identified to capitalise on for future developments. Therefore, this review will bring significant benefits to researchers, academics and industrial professionals

    LMI characterization of the strong delay-independent stability of linear delay systems via quadratic Lyapunov-Krasovskii functionals

    Get PDF
    Projet SOSSOIn this note is proposed an analogue for linear delay systems of the character- ization of asymptotic stability of the rational systems by the solvability of associated Lyapunov equation. It is shown that strong delay-independent stability of delay system is equivalent to the feasibility of certain linear matrix inequality (LMI), related to quadratic Lyapunov-Krasovskii functionals

    Distributed friction damping of travelling wave vibration in rods

    No full text

    An Exact Stability Analysis Test for Single-Parameter Polynomially-Dependent Linear Systems

    No full text
    corecore