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Caractérisation par des inégalités linéaires matricielles de la stabilité
fortement indépendante du retard des systémes linéaires & retard, via
des fonctionnelles de Lyapunov-Krasovskii quadratiques

Résumé : Dans cette note, on propose pour les systémes linéaires & retard un résultat analogue a la
caractérisation de la stabilité asymptotique des systémes rationnels par la solvabilité d’une équation
de Lyapunov associée. On montre que la propriété de stabilité forte indépendante du retard (strong
delay-independent stability en anglais) est équivalente a la solvabilité d’une inégalité linéaire matricielle,
obtenue a partir de fonctionnelles quadratiques de Lyapunov-Krasovskii.

Mots-clés : Systémes linéaires a retard, stabilité indépendante du retard, fonctionnelles de Lyapunov-
Krasovskii quadratiques, inégalités linéaires matricielles.
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1 Introduction

It is a well-known property that the asymptotic stability of the rational system

T = Az, (1)
where A € R"*™ may be equivalently characterized by the spectral property:

Vs € C,Res > 0= det(sl, — A) #0,
or by the solvability of the Lyapunov inequation
JPeR" P=Pl' >0,ATP+PA<O.

The link between the two properties is made by the use of the quadratic function V(z) def 2T Pz, which
is a Lyapunov function for system (1) when P is solution of the previous inequality.

For delay systems, such a result does not exist. However, spectral characterization is known: the
asymptotic stability of the system

& = Az(t) + Bz(t —h) , (2)
A, B € R™ " _is equivalent to
Vs € C,Res > 0= det(sl, — A—e*"B) £0.

When the delay is imperfectly known, there is need for stability results robust wrt this uncertainty.
The notion of delay-independent (asymptotic) stability has been introduced: system (2) is said delay-
independently stable [11, 12, 13] if

Vh>0,Vs € C,Res>0= det(sl, —A—e *"B) #0.
This property has been proved to be equivalent to [6, 8]
V(s,z) € C?,Res > 0,5 #0,|2| <1lors=0,2=1= det(sl, — A—2B) #0 .

A slightly stronger property has also been introduced [16]: system (2) is called strongly delay-independently
stable if

V(s,z) € C2,Res >0,|z| <1= det(sl, — A—2zB) #0.

On the other hand, generalizations of the Lyapunov method to delay differential equations have
been found, notably by Krasovskii [15]. As an example (see [6, Corollary 3.1]), for a general system

&= f(zs), [:C([=h,0R*) = R", (3)

under usual regularity assumptions, the existence of a so-called Lyapunov-Krasovskii functional V :
C([=h,0]) — R and of a1,y : RT — RT oy unbounded, as definite, such that

W) < oy a0) @

ar(|z(B)]) <V (),

along the trajectories, ensures asymptotic stability of the origin.
In particular, simple quadratic Lyapunov-Krasovskii functionals of the type

t

V(zy) = o (1) Pr(t) + / #7(5)Qu(s) ds | (5)

t—h

RR n° 3968



4 Pierre-Alexandre Bliman

for positive definite matrices P,Q € R™*™, have been used early [15, 19, 7]. As a matter of fact, the
derivative of V' given by (5) along the trajectories of (2) is

W)= (a0 (TTEET TE) ()

The result by Krasovskii cited above implies that solvability of the linear matrix inequality (LMI)

(6)

T
PQeR™™ P=P">0Q=Q">0.R= (A P+PA+Q PB) <0

BTP —-Q

is sufficient for asymptotic stability of system (2). Remark that the value of the delay h does not
appear explicitly: solvability of (6) is hence sufficient for delay-independent stability of (2).

There hence exist for delay systems analogue of the results known for the delay-free case, namely
spectral criterion and LMI criterion, the second one being obtained by use of quadratic Lyapunov-
Krasovskii functionals. However, it is known that condition (6) constitutes a conservative criterion of
delay-independent stability: it is sufficient, but not necessary. This fact has been already observed [9].
It has been established formally in [2, 3], in terms closely related to the approach exposed in [4]. It
has also been obtained by Agathoklis et al. [1] without using Lyapunov approach.

Theorem 1. o Solvability of LMI (6) is equivalent to

Reo(A) <0 and min max||M(sl, —A)"'BM 7| <1. (7)

. . €jR
invertible ° 7

e Strong delay-independent stability of system (2) is equivalent to

Reo(A) <0 and max min [|M(sl, —A)'BM || <1. (8)
seIR invertible

e Delay-independent stability of system (2) is equivalent to

Reo(4) <0, max — min [[M(sl, - A)7'BM~'| <1 and det(A+B) #0.  (9)
s€7R\{0} invertible

For sake of completeness, a rapid proof of the first two points is given here. See also the proofs in
[4] (formulas (8), (9)) and [1] and [2, 3] (formula (7)).

Proof. By Kalman-Yakubovich-Popov lemma, solvability of (6) is equivalent to
Reo(A) <0, and 3Q = QT > 0,Vs € jR, BI(s*T—AT) 'Q(sI - A) 'B-Q <0,

which is itself equivalent to (7).
When A is Hurwitz, one has: Vs € C with Res > 0,
min{|z| : z € C, det(s] — A—2zB)} = max{|z| : z€C, det(z] — (sI — A)"'B)}
— p((sT-A)B) = min [M(sT— AT BM7Y|

invertible

using [21, p. 282]. Using maximum modulus principle, one proves the equivalence of the strong delay-
independent stability with (8). The delay-independent stability is treated similarly. O

INRIA



LM characterization of the strong aetay-inaepenaent stabuity 9]

Theorem 1 clearly enlightens that solvability of (6) is indeed sufficient for strong delay-independent
stability as well. An interesting feature is the fact [4] that, for any s € C,

min  |[M(sl, — A)T'BM ™| = p((sI, — A)'B) = pa((sla — A)7'B) , (10)

invertible

where pa represents the structured singular value associated to the uncertainty structure A = {§Iy : § €
C}. This robust control interpretation shows that strong delay-independent stability is equivalent to
the stability of all the uncertain systems obtained when replacing the delay by any proper real rational
stable perturbation of Ho-norm not greater than 1.

In view of these results, it may be proved that the delay-independent stability property is not
robust wrt perturbations of the parameters A, B. More precisely [3], using the right-hand side of these
equivalences, one shows that the subsets of the matrices (A, B) fulfilling (7) or (8) are open for the
product topology induced by the spectral norm. Moreover, the set of the matrices (A4, B) representing
strongly delay-independently stable systems is the interior of the set of the matrices associated to
delay-independently stable systems.

Remark that, in order to improve the accuracy of the Lyapunov-Krasovskii approach, one may
consider larger classes of candidate functionals than (5). This search is not hopeless, as Krasovskii
has proved what is now called a converse Lyapunov theorem, ensuring under reasonable regularity
assumptions the existence of a functional V fulfilling (4), provided that system (3) is asymptotically
stable [15, §30]. Notably, Infante et al. [10] and Whenzhang [20] have shown results which imply that
asymptotic stability of system (2) is equivalent to the existence of a quadratic Lyapunov-Krasovskii
functional (depending upon the delay k), in certain classes generalizing (5). The generalization con-
sists essentially in allowing nonconstant integral kernels. A similar idea is exploited by Gu [5], with
piecewise linear discretizations, giving rise to sufficient stability conditions. For review on the available
methods and results on stability of linear delay systems, the reader is refered to the recent surveys
[14, 17].

So far, the question of the existence of an exact correspondence between a spectral definition
of delay-independent stability and a condition obtained via simple quadratic Lyapunov-Krasovskii
functionals, hence remains unanswered. This is our concern in the present paper.

We provide an analogue of the equivalence between spectral characterization of the asymptotic
stability for rational systems and solvability of the Lyapunov function. A seemingly original method
is used for improving Lyapunov-Krasovskii approach, which may be appropriate in other stability
problems for delay systems. The principle is as follows. Instead of considering the state variable
{z(t+s) : —h < s <0} as usual, we allow the use of more ancient part of the trajectories, and consider
rather {z(t +s) : —kh < s < 0}, for some k € N. Of course, any such function, even sufficiently
smooth, cannot be part of a trajectory of system (2): the supplementary available information is
reintroduced when estimating the derivative of the candidate Lyapunov-Krasovskii functional.

In Section 2, the main result (Theorem 2) is enunciated and commented. Two direct applications are
provided, to strong delay-independent stability of delay systems with commensurate delays (Corollary
3), and to strong delay-independent stabilizability (Corollary 5). A detailed proof of Theorem 2 is
given in Section 3.

RR n° 3968



6 Pierre-Alexandre Bliman

2 A LMI characterization of strong delay-independent stability

Denoting ® the Kronecker product, one defines by LMI(k), k¥ € N\ {0}, the following linear matrix
inequality.

Pr, Qi € REnxkn p— 'P,? > 0,9, = Q{ > 0,Ry <0, where R, € RFDnx(k+)n i given by

T
R, df ( In 0kn><n> (Pk(fk @A)+ (L @ A)TPr+ Q. Pr(lx ® B)) ( Tin Oknxn) (11)
Oknxn  Ikn (I ® B) TPy —Qk Ornsn dkn ) -

Our main result is the following.

Theorem 2. The two following properties are equivalent.
1. System (2) is strongly delay-independently stable, i.e. for any (s,z) € C?,

Res>0,|z| <1=det(sl, —A—2B) #0.
2. There ezists k € N\ {0} such that LMI(k) is feasible .
Morteover,

e if LMI(k) is feasible, then, for any k' € N, k' > k, LMI(k'") is feasible;

e for any h >0, for any k € N\ {0}, for any t > (k—1)h, denoting, for any trajectory x of system

(2)

o o(t) ’ 10
Vi(z)(t) = P
z(t — (k — 1)h) z(t — (k — 1)h)
z(s) T z(8)
+f t - o - ds,  (12)
P \a(s — (k — 1)h) 2(s — (k — 1)h)
one has

st) \ z(t)

WO _ | me| | (13)
z(t — kh) z(t — kh)

where Ry, is defined as in (11).

Theorem 2 establishes a natural extension of the celebrated result valid for delay-free systems: the
strong delay-independent stability is equivalent to the feasibility of a certain LMI, whose unknowns are
the parameters of a quadratic Lyapunov-Krasovskii functional. The Lyapunov-Krasovskii functionals
solving the problem, instead of involving only the values of {z(t +s) : —h < s < 0}, are based on a
larger, but finite, memory, of length at least kh.

Theorem 2 furnishes a sequence of LMI criteria, of arbitrary precision. The precision may be
estimated as follows. One may check from the proof that condition 1. is fulfilled if and only if

Reo(A) < 0 and (sI, — A)71B]¥||0o =0 .

lim |||
k——~00

INRIA
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On the other hand, it will be shown that a sufficient condition for solvability of LMI(k), k € N\ {0},
is just
Reo(A) < 0 and ||[(sI, — A) 7 B]¥||eo < 1.

Remark that, as in the rational case, asymptotic stability of linear delay system is equivalent to
exponential stability. However, the decay rate is not uniform wrt the delay h. At last, notice that a
major benefit of being able to use Lyapunov-Krasovskii framework, is the possibility to deduce results
of stability robustness wrt various, possibly nonlinear, perturbations.

We propose in the sequel two direct corollaries of Theorem 2.

2.1 Strong delay-independent stability of systems with commensurate delays

The first application concerns the linear delay systems having commensurate delays. Consider the
system

lo
&= Az(t—1n), (14)
=0

where Iy € N\ {0} and 4; € R**",] = 0,ly. To handle system (14), one transforms it into a new,
augmented, system having a unique delay. More precisely, defining

x(t)
def T (t - h)

2t — (o — 1)h)

one may “rewrite” system (14) as :

X = AX + BX(t — loh) , (16)
where A, B € Rlon*ln are defined by
def & def &
:e Z Ellg (029 Al, B :e Z El((io_l)T (39 Al, (17&)
1=0 1=0
E lo xlo def . ... . . T
1, €R s (Epp)ij = 1ifi41=7, 0 otherwise, 7,7 = 1,1p . (17Db)

It is clear that the trajectories of system (14) may be obtained as projections of some trajectories of
system (16). Asymptotic stability of (16) hence implies asymptotic stability of (14). It turns out that
strong delay-independent stability of (16) is indeed equivalent to strong delay-independent stability of
(14), see below the proof of Corollary 3.

Corollary 3. The two following properties are equivalent.
1. System (14) is strongly delay-independently stable, i.e. for any (s,z) € C2,

lo

Res >0, |z| <1 = det(sl, — ZzlAl) #0.
0

2. There exists k € N\ {0} for which the following LMI is feasible.
Pp, Q) € RFlonxklon p, 'PkT >0,0, = Qz >0,R, <0, where Ry € R+ Dlonx (k+1)lon ;¢ given by

T
R def ( Tkign Oklonxlon) (Plc(Ilc QA) + T @ AP+ Q. Pe(lk® B)) ( Tiign 0klgn><lgn>
Orionxion  Lkion (I ® B)1'Py, —Qk Okionxion  Lkion

RR n° 3968



8 Pierre-Alexandre Bliman

where A, B are defined in (17).
Moreover, for any h > 0, for any k € N\ {0}, for any t > (k — 1)h, denoting, for any trajectory x

of system (14)

T

ot z(t) z(t)
Ve(@)(t) = : P :
2(t — (klo — 1)h) 2(t — (klo — 1)h)
z(s) ’ z(s)
+/t o ds
= \a(s — (Klo — 1)h) (s — (klo — 1)h)
one has
z(t) ’ z(t)
de((ifz)(t) _ 3 Re 3
2(t — ((k + )l — 1)h) 2(t — ((k + 1)lp — 1))

Similar to Theorem 2, the property stating that the LMI is indeed feasible for k' > k, has been
omitted for sake of space.

Proof. After applying Theorem 2, it only remains to compare det(sI,, — Zéo 2t A)) and det(sI,, — A —
29B). One has :
o lo—0)T
sI, — A—z°B=sI, — Z(Ello + leEl(OO ) )® A .
=0
Now, for any z € C, denote

21 . .
r=rlo) © e, M= Mz 1) ¥ (M), My & (12 i =T .

The next lemma is proved easily :

Lemma 4. The following formula is true, for anyl = 0,1y :

Bl + 20 ER T = M diag{2!; (r2)..; (ro ) M

One deduces from Lemma 4, that

lo
det(sI, — A—2°B) = det(sI, — Z diag{z! Ay; (r2)! Ay; ... (o7 12) Ar))
=0
lo—1 lo

= H det(sI, — Z(Tllz)lAl) :
1'=0

=0

As |r| = 1, the preceding formula yields

lo

V(s,z) € C? with Res >0, |z| < 1, det(s], — ZzlAl) #£0
0

& Y(s,z) € C? with Res >0, |z| <1, det(sI, —A—2B) #0,

which permits to conclude the proof of Corollary 3. U

INRIA
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2.2 Strong delay-independent stabilizability

The other application of Theorem 2 concerns stabilizability by static output feedback. Its proof is
straightforward.

Corollary 5. Consider the open-loop system
z = Apz(t) + A1z(t — h) + Bu(t), y(t) = Cox(t) + C1z(t — h) , (18)

for Ag, A1 € R**" B € R"*P (Cy,Cy € RT*™ n,p,q € N\ {0}. There exists a static output feedback
u(t) = Ky(t) ensuring strong delay-independent stability of the corresponding closed-loop system if and
only if there exist K € RP*? and k € N\ {0}, for which the following LMI is feasible.

Pr, Qp € REVkn D00 > 0 and Ry, < 0, where Ry, € REHnx(k+1)n 4 given by

R, Y ( Ty okm)T (Pk(fk ® Ax) + (I ® Ax) P+ Q. Pullx ® BK)) ( T o,mm)
Oknxn  Tkn (Ir ® Bg)T Py —Qk Oknxn  Tkn )’
where A (i:efA0+BKCO,BK dng1+BK01. |

For sake of space, the result on existence of Lyapunov-Krasovskii functional is not repeated. Nec-
essary and sufficient condition for strong delay-independent stabilizability by use of dynamic output
feedback of fixed order may be deduced as well.

3 Proof of Theorem 2

3.1 Notations
Define, for any k € N\ {0} and s, z € C, the following matrices

def def def (J
JO,k = (Ikn Oknxn)a Jl,k =< (Olmxn Ikn), J © (J(l)vz) ,

(Ek)ij def 1 i¢ i+1=7, 0otherwise, i,j = 1,k, (ex); def | if i = k, 0 otherwise, i = 1,k ,
def

(r(2))i = 271, i=1k, §=8(s)= (shin— (It ® A) — (Bx ® B)) ™" .

Also, for any trajectory of system (2), denote, for ¢ > (k — 1)h,

x(t)
() & z
z(t — (k—1)h)
The size of the previous matrices is respectively
Jogs J1k ko x (k4 1)n, Ji : 2kn X (k + 1)n, E.:kxk,
e kx1, ve(z) : k x 1, S(s) : kn x kn

Xi(t) 1 knx 1.

3.2 Evolution of the candidate Lyapunov-Krasovskii functionals along the trajec-
tories

Let k € N\ {0}. One deduces from (2) that

X (t) = (Iy ® A) A (t) + (I ® B)Xy(t — h) .

RR n° 3968



10 Pierre-Alexandre Bliman

On the other hand, V}, defined in (12) writes

t
Vi(2)(t) = X (t) TP (t) + Xi(s)T QX (s) ds ,

t—h
de((;)(t) = ()T PeXi(t) + X () TPrX(t) + Xe ()T QX (t) — Xi(t — 1) QuXi(t — h)
X)) \" (Pelle ® A) + (I ® A)TP, + Q¢ Piu(lx ® B) X (1)
(Xk(t — h)) ( (I ® B)'Py —Q ) (Xk(t - h)) {19)
As

X (t) = Jop i1 (t),  Xi(t —h) = Jipdeta(2)
one then gets

Xe(t) 1\ _
(Xk(;;_ h)) - Jka-i-l(t) 3

and

dv; t Pl @ A+ (I, @ A)TP, + Q1 Pi(l, ® B
7162:)( ) :XkTJrl(t)JkT( ek ()Iké)g)TPZ k b k(_ka )) JpXp41(2) -

Formula (13) is then proved. Remark that matrix Jj is precisely put to take into account the addi-
tional constraints on the trajectory, as explained in the introduction: if the components of X} were
independent, one would simply get (19), and deduce a LMI condition which is indeed equivalent to (6)
(Hint: use Theorem 1).

3.3 Feasibility of LMI(k) implies strong delay-independent stability of system (2)

We now prove that the feasibility of LMI(k) for a certain k¥ € N\ {0} not only implies delay-independent
stability, but also strong delay-independent stability. Notice that the stability of the system may thus
be proved directly by spectral criterion, without the use of the Krasovskii’s result enunciated in Section
1.

Let k € N\ {0} such that LMI(k) is feasible, let z € C. One shows easily that

2k (2)
One then deduces from the feasibility of LMI(k) that, for any z € C,

. Pl @ A) + (I,  A)TP, Py(I, ® B

= (vk(2) ® In) " Pr(vi(2) ® In) (Ix ® (A+ zB)) + (Ik ® (A + 2B))" (vi(2) ® In,)" Pr(vk(2) ® In)
+(1 = 12?) (vp(2) ® I)* Ok (v (2) ® I,) -
In particular, if |z| < 1, this yields
0> (vg(2) @ In)*"Pr(vk(z) @ I) (I @ (A + 2B)) + (Iy @ (A + 2B))*(vi(2) @ I,)* Pr(vi(2) @ I,) .

The matrix (vg(z) ® I,)*Px(vi(z) ® I,) is positive definite. For any nonzero complex eigenvector u of
A + zB, associated to a complex eigenvalue s, one gets

0> (s +5")u" (04(2) ® In)* Pi(v(2) @ T = (s + 8[| P/ (04 (2) ® T )ul? .

This means exactly that, for any z € C such that |z| < 1, the eigenvalues of A 4+ zB have negative
real part. This hence proves that the feasibility of LMI(k) is sufficient for strong delay-independent
stability of (2). In other words, condition 2. implies condition 1.

Tk (k11(2) ® I,) = ("”“(z) ) ® I, € RFnxn

INRIA
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3.4 Decreasing conservativity of the criteria

Let us now study the behavior of the sequence of criteria LMI(k). We shall establish here that, for
any k € N\ {0},

LMI(k) is feasible = LMI(k + 1) is feasible .

Let k € N\{0} and (P, Qx) be a pair of positive definite matrices from R¥***7 solution of LMI(k).
We shall check that (Pp1, Qk+1) is solution of LMI(k+1), where Py = PL,; >0, Qpi1=QF 1 >0
are defined by

def .. . def .. .
Pr+1 < diag{Px;0,} + diag{0n;Pr}, Qk+1 = diag{Qk;0,} + diag{0n; Qx} .

One has
JT diag{Pr; 0} (Ir4+1 ® A) + (Iy41 ® A)T diag{Pr;0,} + diag{Qx;0,} diag{Pk;0n}(Ix1+1 ® B) J
ft (Ir+1 ® B)" diag{Ps;0,} — diag{Qx; 0, } fH
_ (Jo,k+1>T ( diag{Pr(Ir ® A) + (I ® A)T Py + Q4;0,}  diag{Py(Ix ® B); On}) (Jo,k+1> (20)
J1 k41 diag{(Ix ® B)"Py; 0} — diag{ Q; 0, } J1 k1

and similarly for the other term. One proves directly that, for any o, € {0,1}, for any matrix
M e lexkn
7

Jo g1 diag{M;0,} g 11 = diag{Jy  MJgr;0n}, Jo iy diag{0n; M}Jg i1 = diag{0p; Jo Mgk} -

(67 (67

The expression in (20) is hence equal to

ding (Jo,k)T (Pk(Ik @A)+ (I @ ATPy+ O Prlly ® B)) (Jo,k> 0
J1k (I ® B)"Py, —Qy Jig)

and this permits to deduce that
Ri41 = diag{Ri;0,} + diag{0n;Rs} <0 .

As a conclusion, the set of those k for which LMI(k) is feasible, is either void, or an unbounded
interval of N\ {0}.

3.5 Asymptotic precision of the criteria

One now studies the feasibility of LMI(k) when k — +o0, under the assumption that 1. holds. This
will yield the implication 1. = 2.

e One first transforms LMI(k) into a condition expressed as in the robustness interpretation of
Chen et al. [4], see Theorem 1 above.

Matrix J; may be decomposed by blocks as

J. = Ikn Oknxn
Fo\E L eol,)
Hence, the matrix Ry in LMI(k), decomposed by blocks as

~ ([Re]in [Rili2
R = ([Rkhﬂ [Rk]m) ’

RR n° 3968
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is such that
Relii = Pe((Tx ® A) + (B ® B)) + (It ® A) + (B, ® B)) Py + Qr — (Er ® In)" Qu(Ey ® In),
[Rilis = Prlex ® B) — (Br ® I,)" Qp(ex ® 1),
Riloy = —(ex ® L) Quler ®1I,) -

Using now Kalman-Yakubovich-Popov lemma (see e.g. [18]), solvability of LMI(k) is proved to be

equivalent to

39, = QF >0,Vs € C,Res >0 = det(sly, — (Iy ® A) — (E; ® B)) # 0 and

(8(3)(€k: ® B))* (Qk: — (Br @ L) Qu(Er © 1) —(EBr @ I,)T Qpler ® In)) (5(3)(6k ® B)) <0
In _(ek ® In)T Qk (Ek ® In) _(ek ® In)TQk(ek ® In) In ’

that is

3Qr = QF > 0,Vs € C,Re s > 0 = det(sI, — A) # 0 and
(er ®B) 8" QkS(ex @ B) < [(Bx ®1,)S(ex ® B) + (ex @ I)]"S* QS[(Bx ® I)S (e, ® B) + (e, @ I,)] -

Now, one proves easily that
[(sIp, — A)ilB]k [(sIp — A)ilB]kil
S(er ® B) = : , (Br®In)S(er ® B) + (e ® In) = :
(sI, — A)~'B I,
Taking Qy = Iy, one finally gets that a sufficient condition for realization of 2. is
3k € N\ {0},Vs € C,Re s > 0 = det(sI,, — A) # 0 and ||[(sI, — A)"'BJ¥|| < 1. (21)
e One now transforms condition 1. From relations (8) and (10), this condition is equivalent to

Vs € C,Res >0 = det(sI, — A) # 0 and p((sI, — A)"'B) < 1.

It is well-known that, for any M € R**",
p(M) <1 lim M| =0.
One hence deduces that condition 1. is indeed equivalent to
Vs € C,Re s >0 = det(sI, — A) # 0 and 3k € N\ {0}’5&% I[(sh, — A)~'B¥| <1. (22
e In view of (21) and (22), it remains, in order to prove that 1. implies 2., to show that one may

choose in (22) the index k uniformly wrt s € C, Res >0 .
For k € N\ {0}, let

K, ¥ (s €C : Res>0, |[(sI, — 4)"'BF| > 1} .

By continuity, the sets Kj are closed. As

_ Bl \* .
HMQ—mlmWsQﬁg%ﬂ if 5| > 1]l
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the sets K are bounded, and hence compact. Moreover,
s€ Ko = 1< ||[(sIn — A)7BP*|| < ||[(sI, — A)'B¥|? = s € K}, .

Hence Ky, C Ky, for any k € N\ {0}. The sequence Ky is thus a sequence of nested compact sets.
Assume now that (21) does not hold. If Reg(A) £ 0, then (22) does not hold. Otherwise, for any
k € N\ {0}, the sets K are nonempty. In particular,

so € (] Kot
keN
that is
3s0 € C,Vk €N, ||[(sol — A)"'BZ|>1.
Hence,

VEk € N\ {0}, sup ||[(sol — A) " 'B¥|| > 1,
k' >k

and (22) does not hold either. One has hence proved by contradiction that (22) implies (21).

To summarize, it has been shown that condition 1. is equivalent to (22), which implies (21), which
is itself sufficient to have condition condition 2. This shows finally that condition 1. implies condition
2., and concludes the proof of Theorem 2.
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