18 research outputs found
Coupled Atomic Wires in a Synthetic Magnetic Field
We propose and study systems of coupled atomic wires in a perpendicular
synthetic magnetic field as a platform to realize exotic phases of quantum
matter. This includes (fractional) quantum Hall states in arrays of many wires
inspired by the pioneering work [Kane et al. PRL {\bf{88}}, 036401 (2002)], as
well as Meissner phases and Vortex phases in double-wires. With one continuous
and one discrete spatial dimension, the proposed setup naturally complements
recently realized discrete counterparts, i.e. the Harper-Hofstadter model and
the two leg flux ladder, respectively. We present both an in-depth theoretical
study and a detailed experimental proposal to make the unique properties of the
semi-continuous Harper-Hofstadter model accessible with cold atom experiments.
For the minimal setup of a double-wire, we explore how a sub-wavelength spacing
of the wires can be implemented. This construction increases the relevant
energy scales by at least an order of magnitude compared to ordinary optical
lattices, thus rendering subtle many-body phenomena such as Lifshitz
transitions in Fermi gases observable in an experimentally realistic parameter
regime. For arrays of many wires, we discuss the emergence of Chern bands with
readily tunable flatness of the dispersion and show how fractional quantum Hall
states can be stabilized in such systems. Using for the creation of optical
potentials Laguerre-Gauss beams that carry orbital angular momentum, we detail
how the coupled atomic wire setups can be realized in non-planar geometries
such as cylinders, discs, and tori
Dynamics of cold bosons in optical lattices: Effects of higher Bloch bands
The extended effective multiorbital Bose-Hubbard-type Hamiltonian which takes
into account higher Bloch bands, is discussed for boson systems in optical
lattices, with emphasis on dynamical properties, in relation with current
experiments. It is shown that the renormalization of Hamiltonian parameters
depends on the dimension of the problem studied. Therefore, mean field phase
diagrams do not scale with the coordination number of the lattice. The effect
of Hamiltonian parameters renormalization on the dynamics in reduced
one-dimensional optical lattice potential is analyzed. We study both the
quasi-adiabatic quench through the superfluid-Mott insulator transition and the
absorption spectroscopy, that is energy absorption rate when the lattice depth
is periodically modulated.Comment: 23 corrected interesting pages, no Higgs boson insid
Stroboscopic painting of optical potentials for atoms with subwavelength resolution
We propose and discuss a method to engineer stroboscopically arbitrary
one-dimensional optical potentials with subwavelength resolution. Our approach
is based on subwavelength optical potential barriers for atoms in the dark
state in an optical \Lambda system, which we use as a stroboscopic drawing tool
by controlling their amplitude and position by changing the amplitude and the
phase of the control Rabi frequency in the \Lambda system. We demonstrate the
ability of the method to engineer both smooth and comb-like periodic potentials
for atoms in the dark state, and establish the range of stroboscopic
frequencies when the quasienergies of the stroboscopic Floquet system reproduce
the band structure of the time-averaged potentials. In contrast to usual
stroboscopic engineering which becomes increasingly accurate with increasing
the stroboscopic frequency, the presence of the bright states of the
\Lambda-system results in the upper bound on the frequency, above which the
dynamics strongly mixes the dark and the bright channels, and the description
in terms of a time-averaged potential fails. For frequencies below this bound,
the lowest Bloch band of quasienergies contains several avoided-crossing coming
from the coupling to high energy states, with widths decreasing with increasing
stroboscopic frequency. We analyze the influence of these avoided crossings on
the dynamics in the lowest band using Bloch oscillations as an example, and
establish the parameter regimes when the population transfer from the lowest
band into high bands is negligible. We also present protocols for loading atoms
into the lowest band of the painted potentials starting from atoms in the
lowest band of a standard optical lattice.Comment: 14 pages, 9 figure
Selected Issues Concerning the Use of Computational Techniques in the Design of Steel Pillars Subsequently Exposed to a Fire
Cel: Celem artykułu jest wskazanie możliwości wykorzystania dostępnych, zaawansowanych narzędzi numerycznych do wirtualnego testowania konstrukcji poddanych oddziaływaniom symulowanego pożaru. Przy poprawnie skalibrowanym modelu obliczeniowym, testy przeniesione na platformę wirtualną mogą stanowić wiarygodną alternatywę dla tradycyjnych, kosztownych metod badawczych, w szczególności badań doświadczalnych konstrukcji w skali naturalnej.
Wprowadzenie: Modelowanie słupów stalowych w warunkach pożaru napotyka poważne trudności z uwagi na problemy z dopasowaniem i właściwą kalibracją modelu numerycznego w sposób zapewniający jak najlepsze odwzorowanie warunków pracy, zbliżonych do tych, w jakich znajduje się rzeczywista konstrukcja. W trakcie pożaru, w elementach nośnych (słupach, ryglach) rzeczywistej konstrukcji, przesztywnionej w sposób naturalny elementami doń dochodzącymi generują się dodatkowe siły wewnętrzne, trudne do przewidzenia i których wielkość zależy od sztywności elementów zbiegających się w węzłach, sposobu ich deformacji, rozkładu pól temperatury itp. Ograniczenie zarówno przemieszczeniowych, jak i obrotowych stopni swobody wywołuje dodatkowe obciążenie, które w połączeniu ze zmniejszoną (na skutek działania podwyższonej temperatury) sztywnością elementu może powodować jego wcześniejsze wyboczenie i tym samym – zmniejszenie jego odporności pożarowej, często poniżej poziomu wymaganego odpowiednimi przepisami techniczno-budowlanymi.
Metodyka: W niniejszym opracowaniu zaprezentowano wyniki analiz i symulacji numerycznych przeprowadzonych z uwzględnieniem nieliniowego charakteru zjawisk. W pracy położono nacisk na doskonalenie przyjętego modelu obliczeniowego, jego weryfikację i wielokryterialną walidację. W analizach uwzględniono kilka wariantów warunków brzegowych – zarówno termicznych, jak i mechanicznych. Wyniki analiz porównano z wynikami autentycznych badań laboratoryjnych przeprowadzonych w Uniwersytecie Ulster we współpracy z Uniwersytetem w Sheffield (Wielka Brytania), które wykorzystano do walidacji modelu numerycznego.
Wnioski: Ciągły rozwój technik obliczeniowych stwarza możliwości wykorzystania w analizie konstrukcji budowlanych nowoczesnych metod i narzędzi komputerowych, pozwalających na prowadzenie zaawansowanych analiz termo-mechanicznych. Dostępne narzędzia numeryczne umożliwiają dokładną ocenę przyrostu temperatury elementów konstrukcyjnych z równoczesną analizą wpływu warunków środowiska na mechaniczną odpowiedź konstrukcji. Na obecnym etapie stosowanie tego typu technik obliczeniowych wymaga, poza umiejętnościami obsługi skomplikowanych, komercyjnych narzędzi komputerowych, także zaawansowanej, gruntownej wiedzy teoretycznej. Przeprowadzone analizy wykazały, jak pozornie nieistotne i trudne do uchwycenia błędy modelowe mogą wpływać na jakość uzyskanych wyników.Aim: The purpose of this study is identification of accessible advanced computational tools to facilitate virtual testing of structures exposed to the thermal action of fire. With correctly calibrated numeric models, structure tests transferred to a virtual platform can provide a credible alternative to traditional costly research methods, particularly experimental research performed on actual scale constructions.
Introduction: The modelling process for steel pillars exposed to action of a fire faces serious difficulties because of problems involving matching and proper calibration of the numeric model to ensure the best possible reproduction of working conditions, similar to those in the actual environment. During a fire incident, additional internal forces are generated, which are difficult to predict, culminating in deformation of pillars and adjoining structure elements. Axial and rotational restraints can produce significant loadings which, together with reduced rigidity caused by thermal action, may cause premature buckling of pillars, often below accepted parameters required by relevant building regulations, and reduce pillars’ resistance to the consequence of fire.
Methodology: The paper reveals results from an analysis and performed numeric simulations, and takes account of the non-linear character of outcomes. The paper provides a focus on the development of a selected numeric model, its verification and validation. The analysis includes several variations of boundary conditions covering thermal as well as mechanical issues. For validation purposes, the numeric prediction of structural reaction during heating was compared with published experimental data for tests performed at the University of Ulster in collaboration with the University of Sheffield, UK.
Conclusions: The continuous development of computational techniques provides opportunities in the application of modern techniques and computer technology for performing advanced structural-thermal analysis for building structures. Available numeric tools allow for an accurate assessment of temperature increases in structures. Simultaneously, they facilitate an examination of influences caused by environmental conditions on the mechanical reaction of structures. In order to use such a computational technique a prerequisite lies in the ability to manipulate complex commercial software. Additionally, it is necessary to have advanced and in depth theoretical knowledge of the topic. Examination by authors reveal how seemingly insignificant and difficult to identify modelling errors can affect the quality of final results
Weather routing system architecture using onboard data collection and route optimisation
This paper describes the architecture of a weather routing system consisting of two key elements: onboard monitoring and route optimiser sub-systems. The former is responsible for collecting various onboard measurements, such as current ship position or ship motion variables. These data, when gathered and processed, are then used for fine-tuning a ship model. The model, together with weather forecasts, is utilised by a multi-objective route optimiser to estimate forecasted ship responses during the voyage. The route optimiser has been developed in a client-server architecture to reallocate all necessary high-tech resources to the server side and keep the client software as simple and light as possible. The system also includes a module responsible for optimising transmission costs, to reduce onboard transmission during the voyage. The entire solution has been deployed onboard the demonstrator ship ‘Monte da Guia’ and tested during its operations at sea
Dark state optical lattice with a subwavelength spatial structure
We report on the experimental realization of a conservative optical lattice for cold atoms with a subwavelength spatial structure. The potential is based on the nonlinear optical response of three-level atoms in laser-dressed dark states, which is not constrained by the diffraction limit of the light generating the potential. The lattice consists of a one-dimensional array of ultranarrow barriers with widths less than 10 nm, well below the wavelength of the lattice light, physically realizing a Kronig-Penney potential. We study the band structure and dissipation of this lattice and find good agreement with theoretical predictions. Even on resonance, the observed lifetimes of atoms trapped in the lattice are as long as 44 ms, nearly 105 times the excited state lifetime, and could be further improved with more laser intensity. The potential is readily generalizable to higher dimensions and different geometries, allowing, for example, nearly perfect box traps, narrow tunnel junctions for atomtronics applications, and dynamically generated lattices with subwavelength spacings