772 research outputs found

    Comment on "Observation of Spin Injection at a Ferromagnet-Semiconductor Interface, by P.R. Hammar et al

    Get PDF
    In a recent Letter Hammar et al. claim the observation of injection of a spin-polarized current in a two-dimensional electron gas (2DEG). This is an important observation, since, despite considerable effort of several groups, all attempts to realize spin-injection into a 2DEG using purely electrical measurements have failed sofar. However, in my opinion the claim made is not correct, and the observed behaviour can be explained by a combination of a magneto resistance (Hall) effect (e.g. generated by the fringe magnetic fields present at the edges of the ferromagnetic electrode), with a {\it spin-independent} rectification effect due to the presence of a metal- semiconductor junction.Comment: accepted for PRL, 1 pag

    The Missouri farm real estate situation for 1930-1931

    Get PDF
    Publication authorized July 12, 1932."The text of this bulletin represents a revision of a manuscript with the same title submitted originally by Mr. Callaway to the Graduate School of the University of Missouri in partial fulfillment of the requirements for the Degree of Master of Arts"--P. [5].Digitized 2007 AES.Includes bibliographical references

    Diffuse transport and spin accumulation in a Rashba two-dimensional electron gas

    Full text link
    The Rashba Hamiltonian describes the splitting of the conduction band as a result of spin-orbit coupling in the presence of an asymmetric confinement potential and is commonly used to model the electronic structure of confined narrow-gap semiconductors. Due to the mixing of spin states some care has to be exercised in the calculation of transport properties. We derive the diffusive conductance tensor for a disordered two-dimensional electron gas with spin-orbit interaction and show that the applied bias induces a spin accumulation, but that the electric current is not spin-polarized.Comment: REVTeX4 format, 5 page

    A large-volume, deep-sea submersible pumping system

    Get PDF
    Eight self-contained, in-situ pumps have been used effectively and routinely by our group for the past six years to collect both particulate and dissolved phases from large volumes of sea water. Multiple pumps are rapidly and easily deployed on the same wire, to any ocean depth, in almost any weather. Each is capable of drawing up to 200 liters per hour through four large Nuclepore™ filters, then through three cartridge filters. Pumping is controlled by a Sharp™ pocket computer suitably interfaced with the pump motor and flow meter. Endurance is about 15 hours. Total flow and flow rate are recorded, respectively, by a mechanical flow meter and the computer.Funding was provided by the National Science Foundation under Grant Number NSF OCE-8800620 and the Department of Energy under Grant DE-FG02-88ER60681

    A modified wire clamp system for thirty-liter Niskin bottles

    Get PDF
    A modified clamping system for 30-liter Niskin bottles, consisting of a wire stop, a socket block, and a toggle clamp, has been designed and has been tested at sea. The modified system makes deployment and recovery of the Niskin bottles considerably easier than it is with the standard clamps .Funding was provided by the National Science Foundation under grant Number OCE 84-17910, and by the United States Department of Energy under contract Number DE-AC02-76EV03566

    Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires

    Full text link
    We present numerical calculations of the ballistic spin-transport properties of quasi-one-dimensional wires in the presence of the spin-orbit (Rashba) interaction. A tight-binding analog of the Rashba Hamiltonian which models the Rashba effect is used. By varying the robustness of the Rashba coupling and the width of the wire, weak and strong coupling regimes are identified. Perfect electron spin-modulation is found for the former regime, regardless of the incident Fermi energy and mode number. In the latter however, the spin-conductance has a strong energy dependence due to a nontrivial subband intermixing induced by the strong Rashba coupling. This would imply a strong suppression of the spin-modulation at higher temperatures and source-drain voltages. The results may be of relevance for the implementation of quasi-one-dimensional spin transistor devices.Comment: 19 pages (incl. 9 figures). To be published in PR

    Critical properties of S=1/2 Heisenberg ladders in magnetic fields

    Full text link
    The critical properties of the S=1/2S=1/2 Heisenberg two-leg ladders are investigated in a magnetic field. Combining the exact diagonalization method and the finite-size-scaling analysis based on conformal field theory, we calculate the critical exponents of spin correlation functions numerically. For a strong interchain coupling, magnetization dependence of the critical exponents shows characteristic behavior depending on the sign of the interchain coupling. We also calculate the critical exponents for the S=1/2S=1/2 Heisenberg two-leg ladder with a diagonal interaction, which is thought as a model Hamiltonian of the organic spin ladder compound Cu2(1,4diazacycloheptane)2Cl4{Cu}_2({1,4-diazacycloheptane})_2{Cl}_4. Numerical results are compared with experimental results of temperature dependence of the NMR relaxation rate 1/T11/T_1.Comment: REVTeX, 10 pages, 8 figures, accepted for Phys. Rev.

    Spin gap in the Quasi-One-Dimensional S=1/2 Antiferromagnet: Cu2(1,4-diazacycloheptane)2Cl4

    Full text link
    Cu_{2}(1,4-diazacycloheptane)_{2}Cl_{4} contains double chains of spin 1/2 Cu^{2+} ions. We report ac susceptibility, specific heat, and inelastic neutron scattering measurements on this material. The magnetic susceptibility, χ(T)\chi(T), shows a rounded maximum at T = 8 K indicative of a low dimensional antiferromagnet with no zero field magnetic phase transition. We compare the χ(T)\chi(T) data to exact diagonalization results for various one dimensional spin Hamiltonians and find excellent agreement for a spin ladder with intra-rung coupling J1=1.143(3)J_1 = 1.143(3) meV and two mutually frustrating inter-rung interactions: J2=0.21(3)J_2 = 0.21(3) meV and J3=0.09(5)J_3 = 0.09(5) meV. The specific heat in zero field is exponentially activated with an activation energy Δ=0.89(1)\Delta = 0.89(1) meV. A spin gap is also found through inelastic neutron scattering on powder samples which identify a band of magnetic excitations for 0.8<ω<1.50.8 < \hbar\omega < 1.5 meV. Using sum-rules we derive an expression for the dynamic spin correlation function associated with non-interacting propagating triplets in a spin ladder. The van-Hove singularities of such a model are not observed in our scattering data indicating that magnetic excitations in Cu_{2}(1,4-diazacycloheptane)_{2}Cl_{4} are more complicated. For magnetic fields above Hc17.2H_{c1} \simeq 7.2 T specific heat data versus temperature show anomalies indicating a phase transition to an ordered state below T = 1 K.Comment: 9 pages, 8 postscript figures, LaTeX, Submitted to PRB 8/4/97, e-mail Comments to [email protected]

    Neutron scattering from a coordination polymer quantum paramagnet

    Get PDF
    Inelastic neutron scattering measurements are reported for a powder sample of the spin-1/2 quantum paramagnet Cu(Quinoxaline)Br2\rm Cu(Quinoxaline)Br_2. Magnetic neutron scattering is identified above an energy gap of 1.9 meV. Analysis of the sharp spectral maximum at the onset indicates that the material is magnetically quasi-one-dimensional. Consideration of the wave vector dependence of the scattering and polymeric structure further identifies the material as a two-legged spin-1/2 ladder. Detailed comparison of the data to various models of magnetism in this material based on the single mode approximation and the continuous unitary transformation are presented. The latter theory provides an excellent account of the data with leg exchange J=2.0J_{\parallel}=2.0 meV and rung exchange J=3.3J_{\perp}=3.3 meV.Comment: 10 pages, 11 figures, 1 tabl

    Theoretical analysis of the experiments on the double-spin-chain compound -- KCuCl3_3

    Full text link
    We have analyzed the experimental susceptibility data of KCuCl3_3 and found that the data are well-explained by the double-spin-chain models with strong antiferromagnetic dimerization. Large quantum Monte Carlo calculations were performed for the first time in the spin systems with frustration. This was made possible by removing the negative-sign problem with the use of the dimer basis that has the spin-reversal symmetry. The numerical data agree with the experimental data within 1% relative errors in the whole temperature region. We also present a theoretical estimate for the dispersion relation and compare it with the recent neutron-scattering experiment. Finally, the magnitude of each interaction bond is predicted.Comment: 4 pages, REVTeX, 5 figures in eps-file
    corecore